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ABSTRACT 

This  r e p o r t  p r e s e n t s  a summary o f  r e s u l t s  obtained dur ing  the  p a s t  three 

y e a r s  on a s tudy  of  t h e  u l t r a h i g h  vacuum adhesion of  s i l i c a t e s  as related 

t o  t h e  luna r  su r face .  l h p h a s i s  i s  given t o  t h e  r e s u l t s  ob ta ined  dur ing  t h e  
9 

t h i r d  yea r ,  p a r t i c u l a r l y  t h e  last  q u a r t e r  which has not  p rev ious ly  been 

repor ted .  
b{ 

S i l i c a t e s ,  such as may e x i s t  at t h e  l u n a r  su r face ,  were contac ted  w i t h  

s i l i c a t e s  and w i t h  engineer ing  m a t e r i a l s  t h a t  may be used at  t h e  l u n a r  

su r face .  Adhesion v a r i a b l e s  s tud ied  were e f f e c t s  of type o f  material, 

degree of s u r f a c e  c l e a n l i n e s s ,  s u r f a c e  roughness, l oad  f o r c e ,  c r y s t a l l i n e  

o r i e n t a t i o n ,  and temperature .  

The s i l i c a t e  su r faces  t o  be contac ted  were i n  some cases  formed i n  a i r ,  i n  

o t h e r  cases  they  were formed a t  u l t r a h i g h  vacuum by cleavage.  

t y p e s  of s u r f a c e  formation were chosen t o  represent  bounds t o  the  p o s s i b l e  

range of  s u r f a c e  states e x i s t i n g  on t h e  moon: t h e  first type rep resen t ing  

a contaminated su r face ,  t h e  second an u l t r a c l e a n  su r face .  

These two 

It w a s  found t h a t  the  adhesion phenomena observed were c r i t i c a l l y  dependent 

upon +.he su r face  state. Two types  of  adhesion were noted f o r  t h e  air-formed 

su r faces .  The f i r s t  appeared only at u l t r a h i g h  vacuum, w a s  of r e l a t i v e l y  

high mwni tude ,  w a s  h ighly  load  dependent, and produced ex tens ive  su r face  

damage and material transfer. 

magnituae and appeared under low load  and touch con tac t .  

t h a t  t h e  first type i s  caused by t h e  ac t ion  of t h e  normal atomic bonding 

The second type was of r e l a t i v e l y  low 

It i s  concluded 



forces ,  whereas t h e  second type  i s  produced through t h e  a c t i o n  of d i s p e r s i o n  

forces.  

The adhesion between u l t r a h i g h  vacuum-formed s i l i c a t e  s u r f a c e s  w a s  o r d e r s  of 

magnitude g r e a t e r  t h a n  tha t  between the  air-formed s u r f a c e s .  I n  a d d i t i o n ,  a 

strong long range a t t r a c t i v e  fo rce ,  i n d i c a t i v e  of s u r f a c e  charg ing ,  was no te  . 
This fo rce  was s u f f i c i e n t l y  s t rong  t o  p u l l  t h e  samples i n t o  con tac t  f o r  

separa t ions  up t o  2 m. 

an i so t rop ic ,  being able t o  p h y s i c a l l y  r o t a t e  and t r a n s l a t e  the samples i n t o  

p re fe r r ed  p o s i t i o n s  of con tac t .  It i s  concluded t h a t  t h e  h i g h e s t  magnitude 

adhesion may be caused through t h e  a c t i o n  of t h e  normal atomic bonding f o r c e s ,  

but t h e  su r f ace  charging makes a s i g n i f i c a n t  c o n t r i b u t i o n .  Also, it i s  

concluded t h a t  though random charge s e p a r a t i o n  a s s o c i a t e d  w i t h  bond break- 

age could c o n t r i b u t e  t o  s u r f a c e  charging,  t h e  major c o n t r i b u t o r s  are t h e  

defect  s t r u c t u r e s  i n  t h e  c r y s t a l  l a t t i c e .  

0 

9 

Addi t iona l ly ,  t h e  f o r c e  f i e l d  w a s  macroscopical ly  

Since s i l i c a t e  adhesion i s  c r i t i c a l l y  dependent upon s u r f a c e  state, it i s  

obviously unwise t o  make any gene ra l  s ta tement  regard ing  t h e  degree of 

adhesion t o  be expected during l u n a r  miss ions .  The adhesion found, and t h e  

problems it produces,  w i l l  depend impor tan t ly  upon the p resen t  state of t h e  

luna r  m a t e r i a l  s u r f a c e s  and upon how a s p e c i f i c  ope ra t ion  a f f e c t s  t h i s  

sur face  state. 

vi 



1.0 INTRODUCTION AND SUMMARY 

1.1 General 

This repor t  presents  a summary of work accomplished during t h e  period 

Ju ly  1, 1964 through Ju ly  1, 1967 on the  study of t h e  u l t rah igh  vacuum 

fr ic t ional-adhesional  behavior of s i l i c a t e s  as r e l a t ed  t o  t h e  lunar  surface.  3 

W 1 . 2  Purpose and Importance of Program 

The primary purposes of t h i s  program a re  1) t o  obtain quan t i t a t ive  experimental 

da t a  concerning t h e  ul t rahigh vacuum adhesional-fr ic t ional  behavior of t h e  

materials which may present ly  e x i s t  at t h e  lunar surface (pr imari ly  s i l i c a t e s ) ,  

and between these  and engineering materials which may be placed upon t h i s  surface,  

and 2 )  t o  use these da t a  t o  obtain a b e t t e r  understanding of t h e  mechanisms of 

adhesion. 

possible  react ions of granular lunar  materials t o  engineering operat ions,  and 

t o  inves t iga t e  means by which the  problems, i f  any, posed by these  react ions 

may be minimized. 

Additional purposes are t o  analyze these data w i t h  regard t o  the  

The importance of t h i s  program is t h a t  adhesional-frictional phenomena may 

pose ser ious  problems t o  lunar  surface operations. 

1 . 3  Approach 

The approach used during t h e  f irst  year of the  study was t o  obtain 

quan t i t a t ive  da t a  r e l a t i n g  t o  the  adhesion force between air-formed 

(contaninated)  surfaces at  ul t rahigh vacuum as a function of type of mater ia l ,  

load force ,  c r y s t a l l i n e  or ien ta t ion ,  and temperature. 

'fie approach used during the  second year of t he  study was t o  obtain addi t iona l  

data i n  the  manner of t he  previous year ,  invest igate  t h e  e f f e c t s  of forepump 

type and surface roughness 01, the adhesion, and check data reproducibi l i ty .  

1 



The approach used during the  t h i r d  year  of the  study w a s  t o  produce various 

s i l i c a t e  surfaces  at u l t rah igh  vacuum by cleavage ("clean" sur faces)  , contact  

l i k e  and unlike surfaces  and measure t h e  adhesion force.  The t h i r d  year  

approach w a s  chosen t o  inves t iga te  how the  adhesion of "clean" s i l i c a t e  sur faces  

may d i f f e r  from t h a t  between "dir ty"  s i l i c a t e  surfaces  , and hence determining t 

possible bounds t o  lunar  adhesional phenomena. 
d 

1 . 4  

S i l i c a t e s ,  such as may ex i s t  a t  t h e  lunar  sur face ,  were contacted w i t h  s i l i c a t e s  

and w i t h  engineering mater ia ls  which may be used a t  t h e  lunar  surface.  The 

adhesion w a s  measured as a function of load force ,  temperature, and type of 

6 material .  Load forces up t o  about 10 dynes were applied; temperature w a s  

var ied from about 100°K t o  about 400°K, approximately the  lunar  temperature 

range. Adhesion as small as 2 x dynes could be detected.  Materials used 

Work Accomplished During F i r s t  Year 

were orthoclase,  a l b i t e ,  bytownite, hornblende, hypersthene, and obsidian among 

t h e  s i l i c a t e s ;  aluminum, magnesium, t i tanium a l l o y ,  and beryll ium among t h e  m e t a l s ;  

alumina and a commercial g l a s s .  A d e f i n i t e  load dependence f o r  t h e  adhesion w a s  

detected. For some samples no adhesion w a s  detected a t  low loadings,  but  as load 

w a s  increased t h e  adhesion increased rap id ly  t o  r e l a t i v e l y  l a rge  values (general ly  

hundreds of dynes). 

t h e  action of t h e  normal atomic bonding forces .  

adhesion w a s  present at  low loading; it increased only s l i g h t l y  with increasing 

A l l  evidence indicated t h a t  t h i s  behavior w a s  produced by 

For o ther  samples, however, 

load, reaching a maximum value of only a f e w  dynes at most. 

t h a t  the dispers ion forces were responsible f o r  t h i s  behavior. 

temperature on t h e  adhesion w a s  detected.  

t h e  magnitude of t he  adhesion force and c r y s t a l l i n e  or ien ta t ion  were observed, 

t h e  adhesion force reaching a maximum about t he  pos i t ion  of atomic match i n  

o r i en t  a t  ion. 

The evidence indicated 

No e f f e c t  of 

Indicat ions of a co r re l a t ion  between 

2 



1.5 

The adhesion of addi t ional  s i l i c a t e s  and engineering mater ia ls  was s t u d i e d  

as a function of load force ,  surface roughness, type of forepump used, and 

fo r  checking data reproducib i l i ty .  

the  f indings of t he  first year.  Two types of adhesional behavior were found. 

The f i r s t  appeared only under load,  increasing rapidly w i t h  increasing load;  

w a s  of r e l a t i v e l y  l a rge  magnitude (up t o  about 4 x 10 

present only a t  ultra-high vacuum. 

w a s  p resent ,  extensive surface damage and mater ia l  t r a n s f e r  were noted. 

w a s  concluded t h a t  t h i s  type of behavior is caused by t h e  ac t ion  of the normal 

s i l i c a t e  atomic bonding forces .  

showed much less load dependence , w a s  of r e l a t ive ly  low magnitude , per s i s t ed  

i n  dry ni t rogen ( a t  atmospheric pressure)  , and did not produce surface damage 

o r  material t r ans fe r .  It w a s  concluded tha t  t h i s  type of behavior i s  most 

probably caused by t h e  action of t he  dispersion forces.  

Work Accomplished During Second Year 

s 
The da ta  obtained general ly  confirmed 

Y 

2 dynes);  and w a s  

In  addition, when t h i s  type of adhesion 

It 

The second type w a s  present at  zero load ,  

Further ind ica t ions  i n  t h i s  regard came f r o m  t h e  surface roughness s tud ies .  

I t  was found t h a t  t he  magnitude of t h e  low load adhesion increased as 

surface roughness decreased. 

expected i f  t h i s  low-load adhesion was caused by dispers ion forces.  I t  was 

a l so  found t h a t  t he  high-load adhesion was unaffected by surface roughness, 

which would be expected, a t  l e a s t  over t h e  range of surface roughnesses 

used (300 A t o  8 p  peak t o  peak),  if t h e  normal atomic bonding forces  were 

responsible  f o r  t he  adhesion. 

This i s  the  type of behavior t h a t  would be 

0 

3 



Additional da ta  revealed t h a t  the  adhesional phenomena were unaffected by 

t h e  type of forepump used ( l i q u i d  ni t rogen trapped mechanical vs. so rp t ion ) ,  

and tha t  these  phenomena were qui te  reproducible. 

1.6 Work Accomplished 

Various s i l i c a t e s  were 

and the adhesion force 

c 
During Third Year I 

cleaved at u l t rah igh  vacuum , then touch contacted 

measured. The s i l i c a t e s  cleaved were or thoclase,  

i i 

l abrador i te ,  microcline,  and andesine. The adhesion was measured f o r  t h e  

two fresh surfaces  produced by a s i n g l e  cleavage, f o r  two d iss imi la r  surfaces  

(each a d i f f e ren t  s i l i c a t e )  produced by double cleavage, and f o r  similar 

surfaces (each t h e  same s i l i c a t e  but from d i f f e ren t  samples) produced by 

double cleavage. It w a s  found t h a t  t h e  adhesion magnitude w a s  much l a r g e r  

than for t he  air-formed sur faces ,  adhesion forces  as l a rge  as 10 dynes under 

touch contact being recorded. The adhesion decreased rap id ly  during the  

f i r s t  severa l  minutes a f t e r  cleavage following which only a very gradual 

fur ther  decrease occurred during the  next severa l  days. T h i s  behavior 

occurred regardless  of whether similar o r  d i ss imi la r  mineral faces were 

contacted. Adaitionally,  a s t rong long range a t t r a c t i v e  force ,  ind ica t ive  

of considerable surface e l e c t r o s t a t i c  charging, w a s  noted. This force f i e l d  

w a s  found t o  be anisotropic  on a macroscopic s c a l e ,  and was present  f o r  

unl ike as wel l  as l i k e  samples. I t  w a s  concluded tha t  t h i s  charging may be 

associated with t h e  defect  s t ruc tu res  (d is loca t ions  and impur i t ies )  i n  t h e  

c rys ta l s .  

4 

1.7 Items of Note 

Seven publications and presentat ions have r e su l t ed  t o  date  from the dork under 

t h i s  program: Ryan and Sun (1965a and b) , Ryan (1966a and b )  , Ryan and Baker (19671, 

4 



Ryan and Hansen (1967) , and Grossman (1967). Two addi t iona l  papers , t o  

be submitted t o  t h e  Journal of Geophysical Research, are i n  progress.  

a 
2.0 THE SILICATES 

i It i s  of i n t e r e s t ,  s ince  the  majority of' e f fo r t  during t h i s  study is 

concentrated upon the  s i l i c a t e s  , t o  ou t l ine  b r i e f ly  the  physical  nature 

of s i l i c a t e  systems such as occur i n  t e r r e s t r i a l  and meteor i t ic  materials. 

The s i l i c a t e s  are as a whole highly s t ab le  s t ruc tures .  The bas ic  bui lding 

u n i t  of a l l  s i l i c a t e s  is t h e  s i l i c a  tetrahedron cons is t ing  of a s i l i c o n  

atom f a t  t h e  center )  surrounded by four  oxygens (a t  t h e  v e r t i c e s ) .  The 

silicon-oxygen bond is  intermediate between a pure covalent and pure ion ic  

type.  

t h e  varying degrees t o  which these oxygen atoms are shared by a second 

s i l i c o n ,  a l s o  by the  f ac t  t h a t  there  are a number of other  atoms which 

can e i t h e r  s u b s t i t u t e  f o r  t h e  s i l i c o n  (such as aluminum) o r  can en te r  i n t o  

the  general  l a t t i c e  (such as potassium, sodium, calcium, barium, aluminum, and 

OH- r a d i c a l ) .  

grouped i n t o  s i x  c lasses :  independent te t rahedra l  groups ( t h e  o r t h o s i l i c a t e s ) ;  

double t e t r ahedra l  s t ruc tu res  (dimers ) ; r ing  s t ruc tures ;  chain s t ruc tu res ;  

sheet  s t ruc tu res ;  and th ree  dimensional networks. A wide var ie ty  of mineral 

types are found within each c l a s s  due t o  t he  introduct ion i n t o  the l a t t i c e  of 

various d i f f e r e n t  atoms. 

The w i d e  d ive r s i ty  within t h e  s i l i c a t e  family can be explained by 

On t h e  bas i s  of oxygen sharing the  s i l i c a t e s  are general ly  

5 



general cha rac t e r i s t i c s  of each c l a s s  a r e  as  follows : 

Independent Tetrahedral Groups 

No oxygens are shared and each s i l i c a  tetrahedron i s  i n  t h i s  sense 

independent of a l l  others .  The c r y s t a l  i n t e g r i t y  i s  maintained by 

bonding between t h e  oxygens and cat ions other  than s i l i c o n .  

Examples of t h i s  type of s t ruc tu re  are o l iv ine  (an important 

const i tuent  of meteori tes)  and the  epidote group of minerals. 

Double Tetrahedral S t ruc tures  

The te t rahedra  occur i n  pa i r s  with a s ing le  oxygen per  p a i r  being 

shared. Each p a i r  i s  separated from a l l  other  p a i r s ,  the  remaining 

oxygens bonding w i t h  cat ions other  than s i l i con .  An example of 

t h i s  type of s t ruc tu re  i s  shown by hemimorphite. 

Ring Structures  

Two oxygen atoms per  tetrahedron are  shared. The te t rahedra  form 

r ings containing two, t h ree ,  four  o r  s i x  tetrahedra per  r ing.  The 

remaining oxygens bond w i t h  cat ions other  than s i l i c o n .  A n  example 

of t h i s  c l a s s  i s  bery l  ( s i x  te t rahedra  per  r i n g ) .  

Chain S t ruc tures  

( a )  Single  Chain 

Two oxygens per te t rahedron a re  shared and the  t e t r ahedra  a r e  

joined i n t o  cha i rs  of " in f in i t e "  extent .  

t h e i r  length a r e  bonded by means of l inkages between the  

remaining oxygens and cat ions other  t h a n  s i l i c o n .  An example 

of t h i s  type of s t ruc tu re  i s  given by t h e  pyroxene group of 

The chains normal t o  

6 



minerals,  r e l a t i v e l y  important const i tuents  of t e r r e s t r i a l  igneous 

rocks,  pa r t i cu la r ly  t h e  more basic  va r i e t i e s ,  and meteorites.  

4 ( b )  Double Chains 

c 

( 5 )  

( 6  

The te t rahedra  share a l t e rna te ly  two and th ree  oxygens forming 

double l inked chains of " in f in i t e "  extent. The chains ,  normal 

t o  t h e i r  l ength ,  are bonded by means of l inkages between the  

remaining oxygens and cations other  than s i l i con .  An example 

of t h i s  type of s t ruc tu re  i s  given by t h e  amphibole group of 

minerals. 

Sheet S t ruc tures  

Three oxygen atoms are shared per tetrahedron, t h e  remaining oxygen 

bonding with ca t ions  other  than s i l i con .  The s i l i c o n  bonded oxygens 

form p a r a l l e l  planes of " in f in i t e "  extent. An outstanding example 

of t h i s  type of s t ruc tu re  is given by the micas, r e l a t i v e l y  common 

cons t i tuents  of t e r r e s t r i a l  igneous rock. 

Three-Dimensional Networks 

A l l  oxygens of each te t rahedra  a re  shared with adjacent te t radehra.  

The d ive r s i ty  of minerals i n  t h i s  c l a s s  r e s u l t s  from the  replacement 

of some of the  s i l i c o n  atoms and the introduction of  addi t ional  atoms 

i n t o  t h e  s t ruc tu re  t o  maintain charge neut ra l i ty .  An example of 

t h i s  type of s t ruc tu re  i s  given by t h e  fe ldspars ,  most important 

rock and meteorite const i tuents .  

7 



3.0 NATURE OF SILICATE SURFACES 

The physico-chemical nature of s i l i c a t e  surfaces  has been considered by a 

number of inves t iga tors .  

[1964]. 

[1963]. 

and polar izat ion viewpoint, rather than from the quantum mechanical homopolar- 

bond-resonance viewpoint. 

t h e  problem from an e s sen t i a l ly  c l a s s i c a l  bas i s  can be questioned, Weyl's 

treatment has been successful  i n  providing reasonable explanations f o r  a 

number of  phenomena associated w i t h  s i l i c a t e  surfaces ,  and hence it appears 

t h a t  h i s  approach i s ,  at  present ,  as good as any f o r  use as a s t a r t i n g  point  

i n  the understanding of s i l i c a t e  adhesion. 

Most of t h i s  work has been summarized by E i t e l  

Studies  of p a r t i c u l a r  i n t e r e s t  are those by Weyl I19551 and DeVore 

Weyl has approached the  problem from the  c l a s s i c a l  e l e c t r o s t a t i c  

Though the  v a l i d i t y ,  o r  d e s i r a b i l i t y ,  of approaching 

A f reshly produced s i l i c a t e  surface must ad jus t  t o  t h e  r e su l t i ng  changed 

conditions, these changed conditions being the  unsa t i s f ied  charge and 

coordinations produced and exposure t o  the  ex terna l  environment. According 

t o  Weyl there are, i n  general ,  th ree  possible  w a y s  i n  which a s o l i d  surface 

can adjust :  through polar iza t ion  of surface ions,  through d i s t o r t i o n  of 

surface s t ruc tu re  w i t h  formation of an e l e c t r i c  double l aye r ,  and through 

adsorption of mater ia ls  from the  surrounding environment. For s i l i c a t e s ,  

t h e  first p o s s i b i l i t y  can be disregarded because of the  low p o l a r i z a b i l i t y  

of the S i  

perfect  vacuum, d i s t o r t i o n  alone is  possible .  Surface d i s t o r t i o n ,  according 

t o  Weyl, is  caused by the  necessi ty  fo r  ca t ion  screening. 

(02-) tend t o  displace toward t h e  surface and t h e  cat ions displace away from 

it. This forms or iented dipoles  ( e l e c t r i c  double l a y e r ) ,  t he  negative poles 

4+ (also A13+)  ions,  Obviously, if the  new surfaces  are formed i n  a 

Hence the  anions 

a 



being at  t h e  surface,  and reduces the  r o l e  of t he  cat ions i n  surface phenomena. 

t' 

DeVore [1963] has considered fu r the r  t h e  changes occurring at a f resh ly  produced 

s i l i c a t e  surface.  H e  notes t h a t  i n  almost a l l  cases Si-0 bonds, as w e l l  as 

metal-oxygen bonds, must be broken. 

exposed s i l i c o n  ( o r  metal) ions w i l l  s a t i s f y  t h e i r  charge and coordination 

demands by a t tach ing  oxygen, and t h e  exposed oxygen ( i n i t i a l  and at tached)  

w i l l  s a t i s f y  t h e i r  demands through the  addition of water (as H+ t o  form 

hydroxyl groups and as adsorbed polar  molecules). 

surfaces  formed i n  air  can therefore  be considered t o  be hydrated. For a 

surface formed i n  vacuum, the  charge and coordination demands remain 

unsa t i s f ied ,  and, even though surface d is tor t ion  occurs i n  an attempt t c  

improve cat ion screening, t he  surface w i l l  remain highly reac t ive .  

If surface formation occurs i n  air ,  the  

Essent ia l ly  a l l  s i l i c a t e  

4.0 POSSIBLE ADHESION PRODUCING FORCES 

There are a number of processes ( o r  forces)  t h a t  may contr ibute  t o  sol id-sol id  

s i l i c a t e  adhesion i n  vacuum. These a r e  the  act ion of t h e  normal s i l i c a t e  

l a t t i c e  bonding forces  (ionic-covalent ) , t h e  ac t ion  of dispers ion forces  

(London-Van der  Waals), surface e l ec t ros t a t i c  charging, and t h e  ac t ion  of 

adsorbed sur face  f i lms (including hydrogen bonding). 

The s i l i c a t e  bonding forces a re  highly d i rec t iona l ,  and t h e i r  range of 

e f fec t iveness  is t h e  sho r t e s t  of a l l  forces which could ac t .  Hence t h e i r  

e f fec t iveness  should be highly sens i t i ve  t o  the  atomic s t ruc tu res  of t h e  

contacting surfaces ,  t o  t h e  degree of surface contamination present ,  and t o  

t h e  degree to which charge and coordination demands are unsa t i s f ied .  These 

forces are, i n  general ,  t he  only ones o f  suf f ic ien t  s t rength  t o  produce surface 

d is rupt  ion. 
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The dispersion ( London-Van der  Waals) forces can also contr ibute  s ign i f i can t ly  

t o  s i l i c a t e  adhesion, as evidenced by t h e  work of Bradley [1932], Lowe and 

Lucas [1953], Jordan [1954], and Derjaguin e t  al .  [1954]. These forces  have 

a range of e f fec t iveness  much g rea t e r  than t h a t  of t he  ionic-covalent forces ,  

but  less  than t h a t  of t h e  forces  produced by e l e c t r o s t a t i c  surface charging. 

Also ,  unlike the  ionic-covalent bonds, these  forces  are e s s e n t i a l l y  nondirectionad. 

The force-distance re la t ionships  f o r  these  dispers ion forces  have been 

calculated theo re t i ca l ly  and ve r i f i ed  experimentally f o r  surface separat ions 

greater  than about a t en th  of a micron. 

of quartz surfaces  can produce a surface e l e c t r o s t a t i c  charge In  general ,  

t h i s  charge produces long-range forces  - t he  longest  range of e f fec t iveness  

of any which may a c t .  

surface charging as did Overbeek and Sparnaay [1954]. 

surface charging, ca l led  'mosaic charging ,' has been postulated by Derjaguin 

e t  al. t o  explain the  anomalously high a t t r a c t i v e  forces  detected by Overbeek 

and Sparnaay. According t o  Derjaguin e t  al . ,  because no surface i s  per fec t  

with respect t o  atomic arrangement, lack of loca l ized  impur i t ies ,  e t c . ,  a 

mosaic d i s t r ibu t ion  of charges (of opposite s igns)  could be generated,  the  ne t  

surface charge remaining zero or near zero. 

mobility of these charges i s  allowed, forces could a c t  between two d i e l e c t r i c s  

brought i n t o  close proximity o r  contact.  Because of t h e  mosaic d i s t r ibu t ion  

of these charges, t he  range of effect iveness  of t he  forces  produced would be 

much l e s s  than t h a t  of those produced by homogeneous surface charging but 

greater  than t h e  range of effect iveness  of t h e  ionic-covalent and dispers ion 

forces . 

@ 

Harper 119553 has shown tha t  contact  

"his phenomenon is  herein ca l l ed  'homogeneous' 

Another type of 

If a ce r t a in  amount of  surface 
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The act ion of adsorbed surface f i lms,  par t icu lar ly  H20 (OH), i n  producing 

sol id-sol id  adhesion has been known f o r  some t i m e ,  a considerable amount of 

work having been done on t h i s  problem i n  t h e  f i e l d  of c lay mineralogy. 

E19531 notes t h a t  chemisorbed hydrogen (OH) bonding between the  s i l i c a t e  

un i t s  is a major contr ibutor  t o  t h e  s t rength  of c lays  and t h a t  adsorbed 

G r i m  

4 

j,. water also can contribute.  As f a r  as vacuum adhesion is  concerned, however, 

t h e  adsorbed water can be removed by heat ing t o  10O-15O0C and possibly also 

by exposure t o  the  vacuum alone. 

requires  bakeout at least t o  4OO0C,  and possibly t o  7OO0C. 

surfaces  produced i n  air, t h i s  remains a possible adhesion-producing mechanism 

i n  vacuum. 

However, the chemisorbed hydrogen (OH) 

Hence, f o r  

Hydrogen bonding, which i n  ce r t a in  aspects  i s  s i m i l a r  t o  t h a t  found i n  c lays ,  

i s  a l s o  postulated t o  cause adhesion through surface charging. According t o  

Weyl's views [see Gruver, 19.561, t r ans fe r  of hydrogen ions (such as w i l l  

become at tached t o  s i l i c a t e  surfaces  formed i n  a i r )  can occur between 

contact ing surfaces  i f  t h e  degree of cat ion screening of t he  two surfaces  

i s  dissimilar,  t h e  hydrogen ions moving f romthe  surface having t h e  more 

poorly screened cat ions.  

p o t e n t i a l  between t h e  surfaces and hence w i l l  cause adhesion. This is a 

poss ib le  adhesion-producing mechanism i n  vacuum, provided t h a t  surface- 

cleaning techniques a re  insuf f ic ien t  t o  remove hydrated surface l aye r s ,  but  

t h i s  charging mechanism should not act f o r  similar materials in  contact.  

This w i l l  r e s u l t  i n  t h e  formation of an e l e c t r i c  

Since a number of mechanisms could a c t  t o  produce adhesion between contacting 

S i l i c a t e  surfaces  i n  vacuum, the  problem of understanding the  nature of t he  

adhesion becomes somewhat complicated. Additional complications arise from 
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present uncer ta in t ies  regarding the  nature of s i l i c a t e  sur faces ,  t h e  spec i f i ca t ion  

of what a 'c lean'  s i l i c a t e  surface is and when it is 'c lean, '  and t h e  

determination of t he  proper method fo r  removal of surface contamination. 

Y 
5.0 LUNAR SURFACE ADHESION 

1 The Surveyors have shown t h a t  adhesion occurs at t h e  lunar  sur face ,  and t h a t  

t h i s  contributes s ign i f i can t ly  t o  t h e  s o i l  s t rength.  The Surveyors do not ,  

however, revea l  t h e  nature of t h e  fo rce ( s )  producing t h i s  adhesion, and 

hence whether f o r  a l l  engineering operations performed t h e  adhesion can be 

expected t o  behave s imi la r ly .  The reason f o r  t h i s  i s  t h a t  w e  do not as ye t  

know the exact nature of t he  surfaces  of lunar  materials (it i s  important 

t o  know t h i s  s ince ,  as w i l l  be seen, t h e  adhesion i s  c r i t i c a l l y  dependent 

upon surface s t a t e  and hence upon how engineering operations alter t h e  

surface s t a t e  1. 

However, reasonable bounds can be placed upon surface state as per ta ins  t o  

the  resu l tan t  adhesional behavior. The lower bound would be f o r  surfaces  

whose charge and coordination demands a re  satisfied,  and which have some 

degree of adsorbed material present.  The upper bound would be f o r  sur faces  

whose charge and coordination demands a r e  unsa t i s f i ed  ( ac tua l ly ,  t h i s  is 

probably a minimum upper bound s ince  t i m e  i n  contact e f f e c t s ,  on t h e  lunar  

s ca l e ,  are  not considered). 

If,  during the formation of a f r e sh  surface on the  moon, an atmosphere were 

present ,  e i t h e r  as p a r t  of a general  lunar  atmosphere or as a t r a n s i e n t  

phenomenon generated by the  mechanism causing fresh surface production, then 

the  charge and coordination demands could be s a t i s f i e d ,  and some degree of 
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surface contamination could p e r s i s t .  

atmosphere i s  not present at generation , it is conceivable t h a t  t h e  sur face  

demands could be satisfied over a per iod of t i m e ,  e i t h e r  by t h e  remnant 

lunar  atmosphere, o r  by de-gassing from the  lunar i n t e r i o r  (some p a r t i a l  

s a t i s f a c t i o n  could be produced from the  hydrogen of t h e  s o l a r  wind, but  

appreciable quan t i t i e s  of oxygen a r e  a l s o  required f o r  complete s a t i s f a c t i o n ) .  

Such surfaces  could e x i s t  below t h e  lunar  surface,  bu t ,  i f  t h e  s o l a r  wind 

s t r i k e s  t h e  lunar  surface,  it i s  unl ikely tha t  they could e x i s t  a t  t h e  surface.  

Additionally, even i f  a s ign i f i can t  

On t h e  other  hand, i f  a f r e sh  surface i s  produced i n  the  absence of an 

atmosphere, t h e  charge and coordination demands can remain unsa t i s f ied .  

Alternat ively,  a contaminated surface exposed t o  t h e  s o l a r  wind can be 

"cleaned" t o  the  extent  t h a t  i t s  demands are no longer satisfied. 

surfaces  can e x i s t  a t ,  and below, the  lunar  surface,  being produced through 

the  act ion of t h e  s o l a r  wind and micrometeorite impact. An add i t iona l  

future production mechanism would be through t h e  operations of man ( d r i l l i n g ,  

cor ing,  sample taking,  experiment implacement, locomotion, e t c .  1. 

Such 

The s tud ie s  conducted i n  t h i s  program have involved measurement between 

surfaces  formed i n  air, and between surfaces  formed i n  vacuum. 

formed surfaces  i n i t i a l l y  have t h e i r  charge and coordination demands s a t i s f i e d .  

Exposure t o  u l t rah igh  

but  it is  l i k e l y  t h a t  t he  surface demands remain t o  a l a rge  degree satisfied. 

These s tud ie s ,  hence, a r e  representat ive of the possible  lower bound lunar  

adhesion case. The vacuum formed (cleaved) surfaces represent ,  on the  

o ther  hand, a possible  upper bound f o r  lunar  adhesion (excluding time i n  

contact  e f f e c t s ) .  

The air-  

vacuum suf f ices  t o  remove gross surface contamination, 

For these  surfaces ,  t h e  charge and coordination demands 
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are i n i t i a l l y  unsa t i s f i ed ,  and no contamination is  present .  

6.0 FREVIOUS RELATED WORK 

The e a r l i e s t  work involving d i r e c t  measurement of so l id-so l id  s i l i c a t e  adhesion 

appears t o  be t h a t  of Tomlinson 11928, 19301 and of Stone [1930]. 

measured adhesion between g lass  and quartz  (not s t r i c t l y ,  at least  h i s t o r i c a l l y ,  

I Tomlinson 

a s i l i c a t e )  b a l l s  and f i b e r s ,  de tec t ing  adhesion forces  between t h e  b a l l s  as #' 

3 l a rge  as 10 dynes. Tomlinson's r e s u l t s ,  and p a r t i c u l a r l y  h i s  i n t e rp re t a t ions  

of t h e  adhesion as being atomic, were challenged by Stone, but apparently no 

sa t i s fac tory  reso lu t ion  of t h e i r  differences w a s  achieved. It should be 

noted, however, t h a t  t h e  work w a s  done i n  air, and even though ca re fu l  cleaning 

techniques were used, a reasonably l a rge  amount of sur face  contamination, 

par t icu lar ly  adsorbed water,  w a s  undoubtedly present.  

adhesion experiments with quartz  spheres i n  a i r ,  f inding adhesion forces  as 

l a rge  as 1 . 5  x 10 dynes. Though he presented convincing arguments t h a t  these  

forces  were not  due t o  surface charging, it is l i k e l y  t h a t  a t  least a 

monolayer of adsorbed water was present ,  so t h a t  t h e  degree t o  which t h e  

s i l i c a t e  atomic bonding forces  were ac t ive  i s  uncertain.  

[1965], a l so  studying quar tz ,  concluded t h a t  t h e  observed adhesion w a s  due t o  

dispersion forces .  

Harper [ 19551 performed 

2 

Smith and Gussenhoven 

Only i n  t h e  last few years have experimentF been performed i n  u l t rah igh  vacuum. 

These have demonstrated the  presence of s i l i c a t e  adhesion. 

[1964] experimented with polycrys ta l l ine  s i l i c a t e  powers a t  a vacuum i n  the  

mid 10-l' mm Hg range. 

diameter) and made a rough ca lcu la t ion  t h a t  t h e  adhesion force was 

dyne. 

Sal isbury et  al. 

They found adherence of t h e  power gra ins  e 5p i n  

-4 

In  these  experiments no high-temperature o r  o ther  (e .  g. , ionic-electronic)  

2 t o  3 x 10 
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outgassing w a s  attempted, and the  adhesion was t h a t  under e s s e n t i a l l y  zero 

p r i o r  load. 

s tud ied  l a r g e r  grains  (up t o  1401.1 i n  diameter) a t  pressures  of 

1 x lo-' mm Hg with 1 day outgassing at about 100°C. 

force  of adhesion (with no p r i o r  loading) increased with p a r t i c l e  s i z e ,  being 

i n  excess of 3 x dyne f o r  t h e  l a r g e r  pa r t i c l e s .  They noted t h a t  i f  p r i o r  

loading had been used t h e  adhesion force might have been s ign i f i can t ly  grea te r .  

Neither Sal isbury e t  al. nor S te in  and Johnson determined t h e  nature of t he  

force act ing;  they noted only t h a t  it was  not due t o  surface charging but could 

be dispers ion o r  normal atomic bonding forces. 

This work w a s  followed by t h a t  of S te in  and Johnson [1964], who 

6 x 10-l' t o  * 
They found t h a t  t h e  

Additional experiments on powders have been performed by Halajian (19641, 

Johnson and Greiner (1965), B e l l  (1966), and Blum e t  a l .  (1967). 

used powders of about 4 0 ~  i n  diameter. 

high 10-l' rum Hg range, and t h e  system w a s  maintained continuously a t  20OoC. 

The adhesion force,  calculated from Halaj ian 's  results by Sal isbury 's  method, 

i s  at  least 3 x loe2 dyne. 

gra in  s izes .  They concluded t h a t  dispersion forces  were probably responsible 

f o r  most of t h e  observed adhesion but t h a t  surface e l e c t r o s t a t i c  charging 

a l so  had an ef fec t .  B e l l  ground o l iv ine  a t  an ambient pressure of 

Halajian 

The pressures obtained were i n  t h e  

Johnson and Gre ineru t i l i zed  powders of various 

2 x 

i t s e l f  and t h e  container.  B e l l ,  however, d i d  not attempt t o  determine the  

na ture  of t h e  adhesion forces.  F ina l ly ,  Blum e t  al .  ground basa l t  a t  

ambient pressures  of 

i t s e l f ,  unground rock and metal i n  the  vicini ty .  

mm Hg f inding considerable s t i ck ing  of the r e su l t i ng  powder t o  

t o  lo-' mm Hg finding adhesion of  t he  powder t o  
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7.0 SAMPLE CHOICE AND PREPARATION 

7.1 Sample Choice 

a. S i l i c a t e s  

I Five c r i t e r i a  were used i n  the  choice of t h e  s i l i c a t e  samples. 

f i r s t ,  t h a t  the samples be representat ive of the  more commonly occurring 

These were 

igneous rock and meteorite s i l i c a t e  minerals;  second, t h a t  i n  so f a r  as J 

possible t h e  mineral s u i t e  should encompass the  igneous rock range of ac id i c  

t o  ul t rabacic  (which includes the  meteor i tes ) ;  t h i r d ,  t h a t  each sample be 

as perfect  (as regards competency, pu r i ty )  an example of t he  chosen mineral 

as can be obtained; fourth;  t h a t  i n  s o  f a r  as poss ib le  at  least one example 

of each important c r y s t a l  c l a s s  be s tudied;  and f i n a l l y ,  t h a t  t h e  sample 

physical propert ies  be such t h a t  the  sample can withstand t h e  forming 

operations required i n  sample preparation. 

A s e t  of minerals which appeared t o  s a t i s f y  these  c r i t e r i a  t o  a reasonably 

good degree were chosen. These were: or thoclase,  microcline,  a l b i t e ,  

bytownite, l abrador i te ,  and andesine represent ing t h e  feldspars  ; and 

hornblende, augi te ,  and hypersthene representing t h e  amphibole and pyroxene 

groups. 

since they represent disordered s i l i c a t e  s t ruc tu res .  

Also, a t e k t i t e  ( Indochini te l  and obsidian were picked f o r  study 

Sample iden t i ty  w a s  checked by standard mineralogical techniques. 

h Non-Silicates 

The =ngineering samples used were chosen on the  bas i s  of 1) the  mater ia ls  

might be used on lunar  missions and exposed t o  the  lunar  surface environment 
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and/or 2 )  t h e  materials provided in t e re s t ing  cases f o r  study t o  b e t t e r  

understand the  mechanics of adhesion. The samples chosen f o r  study were: 

spectroscopical ly  pure aluminum, n icke l  and magnesium; commercially pure Lmyllium; 

t i tanium a l loy  ( 6 ~ 1 ,  4V) ; Al (20241, magnesium a l loy  (AZ31B) ; alumina 

(Stupakoff #1530); and aluminosi l icate  g l a s s  (Corning #1723). 

chosen range i n  hardness from very so f t  (Al, Mg) t o  very hard (Be) ,  and from 

very d u c t i l e  ( A l ,  Mg) t o  qu i t e  b r i t t l e  ( B e ) .  

chosen so le ly  because of t h e i r  possible  lunar appl icat ions.  

The metals 

The ceramic and g l a s s  used were 

Chemical analyses were performed on all samples. 

7.2 Sample Preparation 

7.2.1 S i l i c a t e s  and Non-Metallic Non-Silicates 

"he c r y s t a l  axes f o r  each c rys t a l l i ne  sample were first determined by means 

of a petrographic microscope, and marked. 

were then cut  u l t rasonica l ly .  During cut t ing,  t h e  samples were so oriented 

t h a t  t h e  face of i n t e r e s t  f o r  the  adhesion studies w a s  perpendicular t o  t h e  

axis of t h e  cyl inder .  

Cylinders, 0.5 cm i n  diameter, 

a. Air-Formed Surfaces 

Those samples whose surfaces were t o  be formed i n  a i r  were then cleaved i n t o  

disks  0.32 cm th i ck ,  

sonica l ly ,  one along the  ax is  of t he  disk and dead-ended beneath t h e  sur face  

t o  be contacted,  t he  o ther ,  smaller-diameter hole  extending through t h e  d isk  

p a r a l l e l  t o  t h e  contact face. The samples were fastened t o  t h e  experimental 

apparatus (Figure 1) by i n se r t ing  a metal slug i n t o  t h e  dead-ended hole and 

In te rsec t ing  perpendicular holes were d r i l l e d  u l t r a -  
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Figure 1. Exp. Apparatus for Studying Adhesion Between Air-Formed Surfaces 
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locking it with a f i n e  w i r e  i n se r t ed  i n t o  the  cross  hole. 

w a s  g t t ached  t o  the  adhesion-measuring device by in se r t ing  a w i r e  through t h e  

exposed end of t he  slug. 

p l a t e  by threading t h e  slug i n t o  t h e  base plate.  

The upper sample 

The lower sample was r i g i d l y  at tached t o  the  base 

B 

Each of the  sample surfaces  prepared i n  a i r  was given a l i g h t  (10-sec) e tch 

with a mixture of approximately 30% (by volume) hydrofluoric acid,  30% 

g l a c i a l  a c e t i c  acid,  and 40% fuming n i t r i c  acid. 

w a s  t o  remove surface dust contamination. The sample w a s  immediately washed 

with d i s t i l l e d  water and dr ied  i n  an oven (%30OoC). 

placed i n  the  vacuum chamber and pumping was  s t a r t ed .  

6 

The purpose of t h i s  e tch  

The samples were then 

Photomicrographs of t h e  faces t o  be contacted were taken f o r  a l l  samples 

before and after each run, and surface roughness t r a c e s  were made with a 

Bendix Proficorder.  For most samples the peak-to-peak roughness averaged 

between 3 t o  5p;  exceptions t o  t h i s  are noted later. 

b. Vacuum-Formed Surfaces 

A l l  faces  formed i n  vacuum were by cleavage, s ing le  or  double. 

cleavage. t h e  samples were formed i n t o  cylinders of diameter 0.5 cm and 

length 0.64 cm. 

plane. 

t o  hold one end of t he  sample t o  the  adhesion-measuring device,  t h e  o ther  

end being clamped t o  the  base p la te .  

prepared, each 0.5 cm i n  diameter and 0.64 cm i n  length.  

holes w a s  d r i l l e d  i n  t h e  upper sample. 

base p l a t e  and the  two samples clamped together in- l ine.  

notched at t h e  desired cleavage planes. 

For s ing le  

They were notched u l t rasonica l ly  at t h e  desired cleavage 

One p a i r  of attachment holes was dr i l l ed  (as f o r  t h e  air-formed case)  

For double cleavage, two samples were 

A p a i r  of attachment 

The lower sample w a s  clamped t o  t h e  

Both samples were 
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7.2.2 Air-Formed Metals 

Al l  the  metal samples were fabr ica ted  by standard machine shop techniques. 

A l l  were d isks ,  0.5 cm i n  diameter and 0.32 cm th ick .  

necessary, due t o  t h e  presence of undesirable ridges t o  give some of 

t he  samples a l i g h t  po l i sh  with 3 micron aluminum oxide powder. A l l  

samples, immediately p r i o r  t o  use,  were cleaned with detergent ,  r insed  

then with water,  cleaned again with t r ich lore thylene  ( e l ec t ron ic  grade) 

followed by acetone ( e l ec t ron ic  grade) and deionized water. 

Oven dried and in se r t ed  i n t o  the  vacuum system. 

It w a s  found 

They were then 

Photomicrographs of t h e  faces t o  be contacted were taken p r i o r  t o ,  and after,  

contact,  Surface roughness t r a c e s  were made with a Bendix Proficorder.  The 

peak-to-peak roughness averaged between 3 and l o p .  

8.0 INSTRUMENTATION 

8.1 Vacuum System 

Runs during the  f i r s t  year  of t h e  program were made with a vacuum system 

consisting of a mechanical forepump with l i q u i d  ni t rogen cold t r a p ,  a 

200-l/sec ion pump, and t h e  experimental chamber. 

i n  the  se r i e s  were made with a bank of sorpt ion pumps replacing t h e  mechanical 

pump. The purpose of t h i s  change was  t o  determine whether the  type of fore- 

pump had any e f f e c t  on t h e  adhesion da ta  obtained. 

The remainder of t h e  runs 

No e f f e c t  w a s  detected.  

Pressure w a s  monitored by a "nude" Bayard-Alpert ion iza t ion  gage. 

w a s  shielded from d i r e c t  exposure t o  t h e  sample surfaces.  

chamber and t he  ion pump were separated from t h e  low-vacuum sec t ion  by an 

ultrahigh-vacuum bakeable valve t h a t  w a s  closed during operation of t he  ion 

This gage 

The experimental 
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pump. 

cross  upon which w a s  mounted the  adhesion-measuring system. 

were copper and gold gaskets.  

The chamber i tself  consis ted of a 6-inch (diameter) tee and a &inch 

The vacuum sea l s  

Because of r e s t r i c t i o n s  imposed by t h e  adhesion-measuring device,  system 

bakeout w a s  l imi t ed  t o  about l l O ° C .  

a l l  bakeouts. A f t e r  each run t h e  system w a s  f i l l e d  with ni t rogen obtained 

from t h e  top  of a l a rge  l i q u i d  ni t rogen tank. The l i n e s  leading from t h i s  

tank t o  t he  vacuum chamber were f lushed ( w i t h  ni t rogen from t h e  tank)  

immediately before each f i l l i n g .  Since vibrat ion i n t e r f e r e s  with adhesion 

s tud ie s ,  t h e  e n t i r e  ul t rahigh vacuum sect ion of t h e  system w a s  suspended 

from "soft"  spr ings.  

suspended system, i n  i t s  three  o s c i l l a t i o n  modes w a s  about 0.5 cps. This 

degree of i s o l a t i o n  w a s  found t o  be suf f ic ien t .  

8 

The bakeable valve w a s  closed during 

4' 

With these  springs the  na tu ra l  frequency of t h e  

A base pressure of 1 - 4 x 10-l' mm Hg w a s  achieved i n  most instances with 

a l l  t h e  required equipment i n  the  chamber. 

8.2 Load Application System 

6 
An electromagnet, Figure 1, w a s  used t o  apply load force (up t o  10 

t o  t h e  samples f o r  t he  study of t h e  dependence of adhesion on load. 

dynes) 

A s t e e l  

bucket w a s  suspended from t h e  upper sample. Passing current  through t h e  

magnet attracted t h e  bucket downward, hence applying load force.  The current  

w a s  then reduced t o  zero and the  magnet withdrawn.  A number of ca l ib ra t ions  

of load  force  as a function of cur ren t  were made i n  the  vacuum system at 

atmospheric pressure and u t i l i z i n g  Chatil l ion precis ion mechanical spr ings.  

The ca l ib ra t ions  d i d  not vary appreciably ( <  10% f o r  low current  t o  <2% f o r  

m a x i m u m  current  ) . 
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This procedure worked wel l  f o r  t h e  study of adhesion between air-formed 

surfaces s ince  f o r  these  the  surface gemetry could be cont ro l led  s u f f i c i e n t l y  

t o  a l l o w  t h e  required system s t a b i l i t y  t o  be achieved. 

work for the vacuum cleaved surfaces  s ince  it w a s  found t o  be d i f f i c u l t  t o  

However, it d id  not 

produce s u f f i c i e n t  surface f l a t n e s s  even f o r  minerals supposedly possessing 

"perfect" cleavage planes. A load c e l l  device w a s  constructed t o  overcome 1 

t h i s  d i f f i cu l ty ,  but w a s  not completed i n  t i m e  f o r  data t o  be obtained. 

8.3 Adhesion Measuring System 

8.3.1 Adhesion of Air-Formed Surfaces 

A C a h n  t o r s ion  microbalance, Figure 1, measured adhesion force.  Current passed 

through t h e  meter movement c o i l  (suspended i n  a magnetic f i e l d )  appl ied torque 

t o  the balance a r m ,  which along w i t h  t h e  c o i l  w a s  supported by an e l a s t i c  

metal f iber .  The adhesion force w a s  measured as t h e  current  which m u s t  be 

passed through t h e  c o i l  t o  cause separat ion of t h e  samples. 

detected by movement of t h e  microbalance beam from the  zero reference l i n e  and 

by observing the  cont.acting surfaces  with a cathetometer. The microbalance 

i tself  w a s  a t tached t o  a l i n e a r  motion feedthrough w i t h  which t h e  balance 

(and upper sample) could be raised o r  lowered, bringing t h e  samples i n t o  

contact before t h e  load force w a s  applied and keeping them separated during 

bakeout. The minimum detectable  adhesion force w a s  about 2 x 10 dyne. The 

maximum measureable w a s  4 x 10 

essent ia l ly  t h e  same as those recommended by t h e  manufacturer. 

Separation w a s  

-2 

2 dynes. The ca l ib ra t ion  techniques used were 

8.3.2 Adhesion of Vacuum-Formed Surfaces 

The adhesion force observed after vacuum cleavage was tuund t o  exceed, i n  

magnitude, t h e  pul l ing  capacity of t h e  microbalance ( >  0.4 x 10 
2 dynes). 
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Accordingly, t h e  microbalance w a s  replaced by a prec is ion  mechanical spr ing  

at tached t o  a l i n e a r  motion feedthrough (Figure 2). Adhesion force w a s  then 

determined by reading t h e  spr ing def lec t ion  with a cathebrneter as it w a s  
2 

ra ised.  The spr ing allowed measurement of adhesion force  as s m a l l  as 10 
4 

'r 

1 dynes and as l a rge  as 2 x 10 dynes. 
I 

~ '* 
8.4 Cleavage Devices 

The cleavage device f o r  t h e  s ing le  cleavages is shown i n  Figure 2. 

consis ted of a wedge-shaped t o o l  s t e e l  ch ise l  and an anv i l  t o  provide 

support t o  t he  sample opposite t h e  cleavage point. 

by applying a gradually increasing pressure t o  t h e  ch i se l  ( t i p  i n se r t ed  i n  

notch) u n t i l  t h e  sample h a l f s  were wedged apart. 

were mounted on bellows t o  permit removal from t h e  sample v i c in i ty  following 

cleavage. 

It 

Cleavage was obtained 

Both t h e  ch i se l  and anv i l  

The cleavage device f o r  t he  double cleavages operated i n  t h e  same manner. 

Here, however, two blades were used and the  length of t h e  anvi l  w a s  extended 

t o  provide support  opposite both cleavage planes. 

supplied with a clamp t o  hold the  samples together p r i o r  t o  and during 

cleavage, and t o  remove t h e  center  sec t ion ,  composed of one ha l f  of each 

sample, after cleavage. 

The anv i l  was a l s o  

9.0 EXPERIMENTAL DATA 

9.1 Adhesion Between Air-Formed Surfaces 

9.1.1 S i l i ca t e -S i l i ca t e  

The S8mple p a i r s  used, along with per t inent  comments about experimental 

condi t ions,  are presented i n  Table 1. 
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Attempts were made, fo r  a number of t he  runs, t o  de t ec t  adhesion before 

evacuating t h e  chamber, but none w a s  detected. Adhesion appeared, however, 

once the  system pressure entered the  low 10-l' mm Hg range. 

t he  runs,  t h e  samples were then baked f o r  about 1 hour a t  500-600~c. 

For some of 

During 

' t h i s  time t h e  system pressure rose i n t o  t h e  mm Hg range. After  sample 

bakeout and re turn  of the pressure t o  the  low 10-l' mm H g  range, adhesion w a s  

again detected.  The high-temperature bakeout was found t o  have no e f f e c t  on 

the  magnitude of t he  adhesion. It w a s  noted t h a t  t i m e  of exposure t o  vacuum 

did  cause a s l i g h t  increase i n  t h e  adhesion magnitude ( typ ica l ly  10-20%). 

b' 

We attempted t o  determine whether any long range a t t r a c t i v e  forces  were 

present ,  such as those produced by surface e l e c t r o s t a t i c  charging. This was 

done by slowly bringing t h e  samples toward contact by decreasing the  

microbalance current  and observing the  balance poin te r  f o r  any indicat ions 

of an apparent increase i n  sample weight. 

a cathetometer. Only on rare occasions were the re  any ind ica t ions  of long- 

range forces  and t h e  magnitude of these forces, when observed, w a s  much too  

small t o  a f f e c t  t he  adhesion. 

Sample separat ion w a s  monitored with 

The r e s u l t s  obtained f o r  adhesion force as a function of load force a re  shown 

i n  Figures 3-6. 

During two of the  runs (#2 and # 5 ) ,  measurements were made t o  determine 

whether t he  adhesion force w a s  temperature dependent. The r e s u l t s  of these  

runs are shown i n  Figure 7. 

After each run the  system w a s  then brought up t o  atmospheric pressure with 

dry nitrogen. Attempts were made t o  detect  adhesion, and it w a s  found t h a t  
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t he  higher  magnitude adhesion had disappeared. 

adhesion produced under l i g h t  load ( t h a t  par t  i n  t he  f igures  showing only 

moderate load dependence) remained. 

system caused the  immediate disappearance of all adhesion. 

However , t he  lesser magnitude 

Admittance of laboratory air  t o  t h e  

The sample contact faces were then s tudied  with a Le i tp .  petrographic 

(polar iz ing)  microscope , and micrographs were taken. 

9.1.2 S i l i c a t e  - Non-Silicate 

The sample p a i r s  used, along with per t inent  comments about experimental con- 

d i t i o n s ,  are presented i n  Table 2. 

results found,were similar t o  t h a t  f o r  air-formed s i l i c a t e s  contact ing 

s i l i c a t e s .  The da ta  f o r  adhesion force as a function of load force are 

presented i n  Figures 8-10. 

The experimental procedure used, and 

9.2 

9.2.1 S ingle  Cleavage 

The s ing le  cleavage s tudies  consisted of the use of a s ingle  s i l i c a t e  sample, 

cleaving it at  u l t rah igh  vacuum, ro t a t ing  one ha l f  with respect  t o  t h e  o ther ,  

recontact ing t h e  two f resh  surfaces ,  and thereaf te r  measuring t h e  adhesion 

force as a function of t i m e  after cleavage. 

conditions a re  given i n  Table 3. 

Adhesion Between Vacuum Cleaved Surfaces 

The per t inent  experimental 

Sorption forepumps were used f o r  a l l  runs. 

Details of t he  observations f o r  each run are given below: 

R u n  #1 Cleavage Along Orthoclase (001) Plane 

Cleavage w a s  performed at a system pressure of 2 x 10 

cleavage t h e  upper sample ro t a t ed  10'. 

-10 mm Hg. Following 

The first measurement w a s  made f i f t e e n  
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3 minutes after cleavage. This gave a force of adhesion of 8 x 10 dynes. A 

st rong long range a t t r a c t i v e  force w a s  noted. This w a s  s u f f i c i e n t  t o  p u l l  

t he  samples toge ther  when separated by about 1 mm, giving a force of about 

3 2 x 10 dynes. 

after the  first. This gave an adhesion force of 3 x 10 dynes, and a pul l -  

down force again of 2 x 10 dynes. The t h i r d  measurement gave a force of 

adhesion and pull-down force both of 2 x 10 dynes. Subsequent readings 

maintained t h i s  equivalence of forces.  The sys tem w a s  kept at vacuum f o r  

234 hours. During t h i s  t i m e ,  t he  magnitude of t h e  adhesion, and the  long 

range force,  decreased slowly t o  about 4 x 10 

i n  Figure 11. 

A second measurement of  adhesion force w a s  made f i v e  minutes 

3 

3 

3 

2 dynes. The data are p lo t t ed  

Upon admission of ni t rogen t o  the  system, all ind ica t ions  of adhesion 

immediately disappeared. 

Run 12 

Cleavage w a s  performed at  a system pressure of 1 x 10 mm Hg. During 

-10 cleavage, a pressure burst t o  5 x 10 mm Hg w a s  observed. After cleavage 

the  upper sample ro t a t ed  30-40'. 

number of not iceable  s teps  were present with one r e l a t i v e l y  l a rge  prong 

s t i ck ing  up from the  edge of t he  lower sample. 

i n t o  contact ;  t h e  alignment w a s  poor i n  t ha t  the  upper sample w a s  displaced 

from t h e  lower sample with the  apparent contact area being only about one 

f i f t h  t h e  t o t a l  sample area. 

minutes after cleavage and resu l ted  i n  a force of 9 x 10 

s l i g h t  ind ica t ion  of a long range force w a s  detected, and i t s  magnitude was 

Cleavage Along Labradorite (001) Plane 

-10 

The cleavage sur face  w a s  poor i n  t h a t  a 

The samples were then brought 

The first measurement of adhesion w a s  made four  

2 dynes. Only a 

s l i g h t l y  below measurement capabi l i ty  ( < 1 x l o 2  dynes). The alignment w a s  
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then improved and fu r the r  adhesion measurements were made. 

was found t o  decrease rapidly with t i m e ,  level ing o f f  at 4 x 10 

The adhesion force 

2 dynes after 

about 10 minutes. A t t e m p t s  were made t o  apply a load force i n  order t o  

measure t h e  load dependence of t h e  adhesion. 

due t o  the  i r r e g u l a r i t y  of t h e  cleavage surfaces.  

These attempts were unsuccessful 

The system was maintained 

at vacuum fo r  167 hours after cleavage dur ing  which time only a s l i g h t  fu r the r  

decrease i n  adhesion magnitude occurred. A l l  ind ica t ions  of adhesion 

disappeared upon admission of nitrogen t o  the system. 

The da ta  obtained are presented i n  Figure 12. 

Run #3 

Cleavage was made at a system pressure of 

a pressure bu r s t  t o  2 x 

sample ro t a t ed  about 15'. 

sample inadvertent ly  contacted t h e  copper base p l a t e .  

t h i s ,  but  no measurement of t h e  adhesion magnitude w a s  obtained. 

contact was made 20 minutes after cleavage. 

and the re  were no indicat ions of a long range force. Th i s  adhesion remained 

constant over t i e  next four hours, a t  which t i m e  t he  run w a s  terminated. 

Microscopic s tLdies  showed t h e  presence of copper f lakes  adhering t o  high spots  

on both samples. 

Cleavage Along Microcline (001) Plane 

2 x 10-l' mm Hg. During cleavage, 

mm Hg was observed. After  cleavage t h e  upper 

P r io r  t o  recontact with t h e  lower sample, t h e  upper 

It adhered s t rongly t o  

F i r s t  sample 

The adhesion force w a s  10 dynes, 2 

Run 14 

Cleaurage w a s  made at a system pressure of 

a pressure burs t  t o  1 x 10-1 mm Hg was observed. 

sample r o t a t e d  about 40° and within one minute recontacted the  lower sample. 

Cleavage Along Andesine (001) Plane 

3 x 10-l' mm Hg. During cleavage, 

A f t e r  cleavage t h e  upper 

4 1  



I -  - -  

~ 0 0 0 0 0 0  z z z z z z  

c9 
51 
X 

* 

42 



The cleavage surfaces  had several  l a rge  steps on them so t h a t  contact w a s  poor. 

2 The f i r s t  measurement of adhesion gave an adhesion force  of 9 x 10 dynes. The 

force decreased over t h e  next 20 minutes t o  about 3 x 10 dynes. It the rea f t e r  

decreased very slowly t o  a value of about l o 2  dynes over a period of 42 hours. 

Only very s l i g h t  ind ica t ions  of a long range force w e r e  detected.  

indicat ions of adhesion disappeared upon admission of ni t rogen t o  t h e  system. 

2 

All 

The da ta  obtained are presented i n  Figure 12. 

R u n  # 5  Cleavage Along Labradorite (001) Plane 

Cleavage was made a t  a system pressure o f  

a pressure burs t  t o  4 x 

sample ro t a t ed  about 40° and recontacted the lower sample within one minute. 

The cleavage surfaces  were the  poorest o f  any produced t o  date, being very 

i r r egu la r  and having more the  appearance of f ractured surfaces .  Contact 

between t h e  two surfaces  w a s  so le ly  a t  a raised area near t he  center  of t h e  

lower sample, and the  surfaces  over t h e  greater  pa r t  of t h e i r  a rea  were 

separated by several  t en ths  of a mill imeter.  I n i t i a l  measurement of adhesion, 

2 x 10-l' mm Hg. 

mm Hg w a s  observed. After  cleavage the  upper 

During cleavage 

2 
about 7 minutes after cleavage, gave an adhesion force of about 6 x 1 0  

Only a very s l i g h t  indicat ion of a long range force w a s  detected,  and i t s  

magnitude w a s  below measurement capabi l i ty .  The adhesion rap id ly  decreased t o  

below de tec tab le  i n  about 40 minutes. 

brought i n t o  t h e  v i c in i ty  of t h e  upper sample t o  see whether the  sample would 

be a t t r a c t e d  t o  it. No a t t r a c t i o n  w a s  noted. 

dynes. 

During t h i s  t i m e  the  cleavage device w a s  

The data obtained are  presented i n  Figure 12.  
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R u n  #6 

Cleavage w a s  made at 8 system pressure of 

Cleavage Along Labradorite (001) Plane 

2 x 10-l' mm Hg. During cleavage 

a pressure burst 

t h e  upper sample 

one minute. The 

cleavage, gave a 

after 8 minutes. 

t o  t h e  mid 10-l" mm Hg range w a s  observed. 

ro ta ted  about 45' and recontacted t h e  lower sample within 

AFter cleavage 
# 

I 

first measurement of adhesion, made 18 minutes after 
.I 

3 3 force of 1.5 x 10 dynes. This decreased t o  10 dynes 

The lower sample was then ro t a t ed  so t h a t  it w a s  about 5' from I 
I 

atomic match i n  or ien ta t ion  with t h e  upper sample. 

immediately increased t o  about 2.8 x 10 

force was noted, which w a s  s u f f i c i e n t l y  s t rong  t o  br ing the  samples i n t o  

contact a t  separat ions less than about 1 mm. 

upper sample; no a t t r a c t i o n  of t h e  sample t o  t h e  c h i s e l  w a s  detected.  

w a s  a l so  noted t h a t  fo r  t h e  5' alignment t h e  upper sample, as it approached 

t h e  lower sample, would r o t a t e  i n t o  what appeared t o  be atomic match (0') 

as it was pul led  i n t o  contact.  

The adhesion force 

3 dynes. A d i s t i n c t  long range a t t r a c t i v e  

The c h i s e l  w a s  brought t o  t h e  

It 

The lower sample was then ro t a t ed  i n t o  various pos i t ions  of atomic mismatch 

i n  or ientat ion and it w a s  found t h a t  upon doing t h i s ,  t h e  magnitude of t h e  

adhesion force decreased somewhat, and no ind iaa t ion  of a long range force 

could be detected.  

and t h e  resu l tan t  observations were the  same as reported previously.  

system was maintained at vacuum f o r  about 330 hours a f t e r  cleavage, during 

which time t h e  adhesion force  decreased s l i g h t l y .  

The samples were then ro t a t ed  back t o  t h e  5 O  or ien ta t ion  

The 

The da ta  up t o  T = 330 hours are presented i n  Figure 13. 
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A t  T = 330 hours the  ion pump w a s  turned o f f ,  allowing the  system pressure 

t o  rise slowly. 

The adhesion force w a s  much smaller, as w a s  t he  long range force.  The pump 

was then turned on, the  system pumped t o  2 x 

It w a s  found t h a t  both t h e  adhesion and long range force were s t i l l  small. 

However, within 20 minutes the  adhesion force had increased t o  i t s  previous 

value, whereas  t h e  long range force remained s m a l l .  The pump was then 

cycled a second t i m e  with s imi l a r  results except t h a t  t h e  adhesion d id  not 

recover. 

were admitted t o  the  system. Detectable, but small, adhesion remained t o  a 

pressure of 10 mm Hg. A t  t h i s  point  t h e  system w a s  l e t  up t o  atmospheric 

pressure and a l l  indicat ions of adhesion disappeared. 

presented i n  Figure 14. 

In  30 minutes t h e  pressure had r i s e n  t o  9 x lo-' mm Hg. 

U 

and t h e  adhesion measured. 

... 

Fina l ly ,  t he  pump w a s  turned o f f  again and s m a l l  bu r s t s  of ni t rogen 

-4 

The da ta  obtained are 

Run #7 

Cleavage w a s  made at a system pressure of 3 x 10 

a pressure bu r s t  t o  t he  mid 10 

cleavage t h e  upper sample ro t a t ed  about 45'. 

obtained about 12 minutes af ter  cleavage; t h e  adhesion force was about 

2 8 x 10 dynes. 

t o  experimental d i f f i c u l t i e s  and the  adhesion force  was 2-3 x 10 

t h a t  time. The force decreased slowly t h e r e a f t e r ,  f a l l i n g  below measurement 

capabi l i ty  a f t e r  about 70 hours. Some indicat ions of a very weak long range 

force were detected during the  ea r ly  stages of the  run. 

Cleavage Along Labradorite (001) Plane 

- 10 mm Hg. During cleavage, 

-10 mm Hg range w a s  observed. Following 

"he first measurement w a s  

The next measurement was not made u n t i l  20 hours later due 

dynes a t  2 
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R u n  #8 

Cleavage w a s  made at  a system pressure of 

a pressure burs t  t o  8 x lo-' mm Hg w a s  observed. 

upper sample ro t a t ed  about 30°. 

5 minutes after cleavage, giving a force of 3 x 10 

long range force w a s  present.  

10 

terminated. 

a f t e r  cleavage. !&ereafter, it decreased rapidly t o  barely detectable .  

da t a  obtained a r e  presented i n  Figure 12. 

Cleavage Along Labradorite (001) Plane 

2 x 10-l' mm Hg. During cleavage, 

Following cleavage t h e  

The first adhesion measurement w a s  made 

2 dynes. A s ign i f i can t  

The adhesion force decreased slowly t o  

dynes over a per iod of 55 hours, a t  which t i m e  the  experiment w a s  2 

The long range force remained moderately s t rong f o r  about 1 hour 

The 

R u n  #9 

Cleavage w a s  performed a t  a system pressure of 1-2 x 10 

pressure burs t  was observed. 

5'. Fi r s t  contact occurred 3 min. a f t e r  cleavage, r e s u l t i n g  i n  an adhesion 

force of 1.1 x 10 dynes. This force decreased slowly over t h e  per iod of 

t h e  experiment (while t h e  pressure was maintained at 1-2 x 10 

The data  a r e  shown i n  Figure 15. 

Cleavage Along Orthoclase (001) Plane 

-10 mm Hg. No 

Following cleavage t h e  upper sample ro t a t ed  

3 

- 10 
mm Hg). 

A long range a t t r a c t i v e  force was noted throughout t h i s  period. 

w a s  i n i t i a l l y  s u f f i c i e n t l y  s t rong t o  br ing t h e  samples i n t o  contact a t  

separations less than 1 / b  t o  1 /2  mm. 

showed somewhat more v a r i a b i l i t y  than noted i n  previous runs. 

t o  be due t o  var ia t ions  i n  sample alignment. 

ro ta ted  a f e w  degrees r e l a t i v e  t o  each o the r ,  but i f  they were brought slowly 

toward contact t h e  long range force f i e l d  would r o t a t e  t he  upper sample i n t o  

"his force 

The magnitude of t h e  adhesion force 

This appeared 

The samples when apart  were 
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what appeared t o  be atomic match with t h e  lower sample. On t he  other  hand, 

i f  t h e  samples were brought together  r a t h e r  quickly some misalignment tended 

t o  remain. The measured adhesion force w a s  l a r g e s t  when apparent pe r f ec t  

alignment was obtained, being i n  general  about 30% - 402 smaller when some 

misalignment w a s  evident. 
d 

The da ta  p lo t t ed  i n  Figure 15 a r e  f o r  those 

measurements where t o  the  bes t  as could be observed per fec t  alignment had 

been achieved; it i s  seen t h a t  even f o r  t h i s  case a s ign i f i can t  amount of 

s c a t t e r  remains. 

8 x 10 

About 26 hours following cleavage, load forces  (up t o  

5 dynes) were applied t o  the  samples. No indicat ions of a load 

dependence were obtained, but s ince  d i f f i c u l t i e s  were encountered i n  main- 

ta in ing  system s t a b i l i t y  nothing can be sa id  as t o  whether or  not a load 

dependence ex i s t s .  Within two hours a f t e r  t he  loadings were made it w a s  

found t h a t  an approximately 80% decrease i n  the  adhesion force magnitude had 

occurred. It i s  not c l ea r  whether t h i s  decrease w a s  caused by o r  r e l a t e d  t o  

t h e  appl icat ion of a load force t o  the  surface.  The new value of t h e  

adhesion (2-3 x 10 

second series of loadings w a s  made about 100 hours a f t e r  t h e  first series. 

2 dynes) remained constant t he rea f t e r ,  even though a 

The ion pump after about 144 hours at 1-2 x 10-l' mm Hg was turned o f f .  

change i n  the  magnitude of t he  remaining adhesion w a s  observed up t o  a 

pressure of 1 x mm Hg, a t  which time t h e  system w a s  re-pumped t o  

1-2 x 10-l' mm Hg. 

No 

The pump w a s  then again turned o f f  and t h e  bakeable 

valve opened s l i g h t l y .  

pressure of 9 x 

Evacuation of t he  system back t o  1-2 x 10-l' mm Hg d id  not r e s t o r e  the  adhesion. 

The adhesion magnitude remained constant up t o  a 

and then all indica t ions  of adhesion rapidly disappeared. 
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Run #lo  Cleavage Along Orthoclase (001) Plane 

Cleavage w a s  performed at a system pressure of 2-3 x 10 

cleavage, a pressure burst  t o  t h e  top of t h e  10-l' mm Hg range w a s  observed. 

The upper sample, a f t e r  cleavage, w a s  a t t r ac t ed  t o  the  metal a n w i l ,  and 

contacted it along one edge. The adhesion was st rong,  but it w a s  not possible  

t o  obtain a measure of it. 

lower sample, and displaced l a t e r a l l y  several  mil l imeters .  A r e l a t i v e l y  

l a rge  adhesion force w a s  evident ,  but due t o  the  displacement no quan t i t a t ive  

measurements of it were made u n t i l  25 minutes after cleavage. 

it w a s  r ead i ly  evident t h a t  t h e  adhesion had decreased by a s ign i f i can t  amount. 

The first measurement, 25 minutes after cleavage, gave an adhesion force of 

5 x 10 dynes. Only a s l i g h t  indicat ion of a long range a t t r a c t i v e  force w a s  

detected.  

The adhesion decreased slowly over a per iod of 1 1/2  hours, and then rap id ly  

disappeared i n  t h e  course of an addi t iona l  3 1/2 hours. 

are presented i n  Figure 12. 

-10 mm Hg. During 

The upper sample ro t a t ed  loo with respect  t o  t h e  

By t h i s  t i m e  

2 

Also, t he re  w a s  no tendency f o r  the samples t o  r o t a t e  i n t o  alignment. 

The data obtained 

Run 111 

Cleavage was performed at a system pressure of 1-2 x 10 mm Hg. No 

pressure b u r s t  was  observed. 

and displaced l a t e r a l l y  about 1 mm with respect t o  the  lower sample. 

first measurement of adhesion, obtained 4 min. after cleavage, gave an 

adhesion force  of 1.2 x 10 

from match i n  rotat ion.  A s t rong long range a t t r a c t i v e  force w a s  noted. This 

w a s  o f  s u f f i c i e n t  s t rength t o  p u l l  the  samples i n t o  contact f o r  separat ions 

less than 1 m. For the  second and subsequent contacts  it was found t h a t  t h i s  

long range force  f i e l d  w a s  s u f f i c i e n t l y  strong (and anisotropic  on a macroscale) 

Cleavage Along Orthoclase (001) Plane 

-10 

After cleavage the  upper sample ro ta ted  l o o  

The 

3 dynes. For t h i s  measurement t h e  samples were 10' 

51 



t o  ro ta te  and displace t h e  samples back t o  the i r  pre-cleavage pos i t ions  as 

they were brought toward each other.  

of contact were displaced l a t e r a l l y  by about 1 mm and ro t a t ed  10'). 

second adhesion measurement, at  t h e  0' ro t a t ion  and zero la teral  displacement 

enforced by t h e  long range a t t r a c t i o n ,  gave a force of 1.7 x 10 

( l a r g e r  than t h e  f irst  measurement). 

t i m e .  

(As noted above these  samples when out 

The 

i 

3 dynes 

The adhesion then decreased slowly with 

No a t t r a c t i o n  of t h e  upper sample t o  the c h i s e l  w a s  detected.  

Af te r  s i x  hours with l i t t l e  change i n  t h e  adhesion magnitude, t he  bottom 

sample w a s  ro t a t ed  so t h a t  it w a s  about 30' out of atomic match i n  o r i en ta t ion  

with respect t o  the  upper sample. 

long range force again ro t a t ed  the  upper sample t o  0' alignment and the  

adhesion force  magnitude remained the  same as before. The lower sample w a s  

then rotated so t h a t  it w a s  90' out of match. The long range force ,  as t h e  

samples were brought together  ro t a t ed  t h e  upper sample so t h a t  when contact  

w a s  made the  samples were only 40' out of match. 

dropped t o  3 x 10 dynes. 

Unfortunately, i n  doing so f lakes  of metal from t h e  c h i s e l  became deposited 

upon the face of t h e  lower sample. These f lakes  prevented the  two surfaces  

from coming i n t o  contact .  

dropped below measurement capab i l i t i e s ,  as did the long range force.  In  

order  t o  make ce r t a in  t h a t  t h i s  l a rge  decrease w a s  not due t o  t h e  180° 

ro ta t ion ,  t h e  samples were ro ta ted  back t o  Oo. 

force remained below measurement capab i l i t i e s .  

As t h e  samples were brought together  t h e  

The r e su l t an t  adhesion force  

2 Next, t he  samples were ro t a t ed  t o  180' out of match. 

When t h i s  occurred t h e  adhesion force immediately 

The adhesion and long range 

The data obtained are  presented i n  Figure 16. 

52 



I 
I- 
- 

E 
3 

ii > 

0 
C 
0 .- 
CI 
m CI 
E al .- 
B 
8 
U 
0 
F 

53 



9.2.2 Double Cleavage 

The double cleavage s tud ie s  consisted of t h e  use of two s i l i c a t e  samples o f ,  

w i t h  one exception, d i f f e r i n g  composition and/or c r y s t a l l i n e  s t ruc tu re .  

samples were cleaved simultaneously, h a l f  of each sample removed from t h e  

experiment v i c i n i t y ,  t h e  upper sanple ro t a t ed ,  and then a fresh surface o f  

sample A w a s  contacted t o  a fresh surface of sample B. Adhesion force w a s  

measured as a function of t i m e  af ter  cleavage. No load force w a s  applied. 

Both 

The pertinent experimental conditions are given i n  Table 4. 

observations f o r  each run are given below. 

Details o f  t h e  

Run #1 Orthoclase (001) and Microcline (001) 

The double cleavage w a s  performed a t  a system pressure of 2 x 10 mm Hg. 

A pressure burst  t o  about 5 x mm Hg was observed. During cleavage, t h e  

upper sample (microcline) broke not only at  t h e  desired spot but a l s o  a t  t h e  

cross-pin hole holding it t o  t h e  mechanical spring. 

i n t o  a number of pieces.  

t h e  fractured orthoclase attached themselves t o  t h e  microcline f r a c t u r e  face. 

The largest chip w a s  of dimensions about 0.5 x 0.5 x 1.0 mm. This attachment 

demonstrated t h e  existence of adhesion and t h e  indicat ions w e r e  t h a t  a long 

range a t t r a c t i v e  force w a s  present.  

-10 

The lower sample broke 

A s  t h e  upper sample was lowered, s eve ra l  chips o f  

We were unable t o  remove t h e  or thoclase chips from t h e  microcline,  but w e  

were able w i t h  t h e  c h i s e l  t o  move them over t h e  surface t o  some degree. The 

pa r t i c l e s  remained attached u n t i l  sho r t ly  af ter  t h e  system w a s  brought t o  

atmospheric pressure.  A t  t h a t  t i m e ,  a l l  indicat ions of adhesion disappeared. 

Run #2 Orthoclase (001) and Microcline (001) 

The double cleavage w a s  performed a t  a system pressure of 2 X 10 
-10 mm Hg. 
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A pressure burst  t o  about 5 x mm Hg w a s  observed. Both cleavages were 

good. No realignment of t h e  samples occurred so t h a t  a l l  contacts  were made 

w i t h  the respect ive a-axes aligned. F i r s t  contact w a s  made f i v e  minutes 

after cleavage. This resu l ted  i n  an adhesion force of  about 4 x 10 dynes. 

This force gradually decreased t o  below measurement c a p a b i l i t i e s  i n  about two 

hours. The data a re  shown i n  Figure 17. 

2 

A long range a t t r a c t i v e  force w a s  noted fo r  a l l  measurements. This force ,  

however, did not give any indicat ions of producing sample ro ta t ion  o r  d is -  

placement. No sample repulsion w a s  present at  any time. 

R u n  #3 Albite  (001)  and Labradorite (001) 

The double cleavage w a s  performed at a system pressure of 

During cleavage, a pressure burs t  t o  6 x 

sample ( l ab rador i t e )  f ractured at  a l a rge  angle t o  t h e  cleavage plane 80 t h a t  

no quant i ta t ive  data could be obtained. However, it was noted t h a t  several  

l abrador i te  chips adhered t o  t h e  upper ( a l b i t e )  sample. 

3 x 10-l' mm Hg. 

mm Hg w a s  observed. The lower 

R u n  #4 Orthoclase (001) and Microcline (001)  

The double cleavage w a s  performed at a system pressure of 

During cleavage, a pressure burs t  t o  t he  low 10 mm Hg range occurred. Both 

cleavages were bad and a number o f  fragments were produced. A fragment of  

microcline adhering t o  the  microcline (upper sample) w a s  noted t o  jump t o  t h e  

lower sample as the  samples were brought toward contact.  Defini te  ind ica t ions  

were observed fo r  t h e  presence of a long range a t t r a c t i v e  force between t h e  

samples. A l l  indicat ions of adhesion, however, disappeared before a measure- 

ment of adhesion magnitude could be made. 

2 x 10-l' mm Hg. 

-8 
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Run # 5  Orthoclase (001) and Microcline (001) 

The double cleavage w a s  performed at a system pressure o f  

During cleavage, a pressure bu r s t  t o  t h e  top  of t h e  

2 x 10-l' mm Hg. 

mm Hg range w a s  

t o  t h e  microcline. 

af ter  cleavage, r e su l t ed  i n  an adhesion force of 3 x lo2 dynes. 

It  w a s  removed with t h e  ch i se l .  F i r s t  contact ,  6 minutes 

Th i s  dropped 

observed. A long range a t t r a c t i v e  force w a s  noted on bringing t h e  samples 

toward contact. A small or thoclase chip on t h e  or thoclase (bottom) sample 

2 I 

t o  s l i g h t l y  below measurement ( <  10 dynes) i n  two minutes. 'She data are 

shown i n  Figure 17. 

Run #6 Orthoclase (001) and Microcline (001) 

The double cleavage w a s  performed a t  a system pressure o f  

During cleavage, a pressure bu r s t  t o  t h e  top of t h e  mm Hg range w a s  

observed. 

t o  the ch ise l  and contacted it on one edge. The microcline w a s  a l so  

a t t r ac t ed  t o  t h e  sample center  sect ions during t h e i r  removal. A s  t h e  samples 

were brought toward contact several  or thoclase chips ( '  1 mm long) stood on 

end, aligning themselves with t h e  ax i s  of t h e  upper sample. 

t o  t h e  microcline sample. These chips were then removed w i t h  t h e  ch i se l .  

Due t o  experimental d i f f i c u l t i e s  i n  obtaining sample alignment, t h e  first 

attempt t o  measure adhesion w a s  not made u n t i l  24 minutes a f te r  Cleavage. 

Indications of adhesion were present ,  but t h e  adhesion magnitude w a s  below 

measurement c a p a b i l i t i e s  ( <  lo2 dynes). 

3 x 10-l' mm Hg. 
I 

Following cleavage, t h e  upper sample (microcline) was a t t r a c t e d  

One t r a n s f e r r e d  

R u n  #7 Orthoclase (001) and Labradorite (001) 

The double cleavage w a s  performed at a system pressure of 4 x 10"O mm Hg. 
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During cleavage, a pressure burs t  t o  t h e  mid lo-' mm Hg range was observed. 

The lower sample ( l ab rador i t e )  cleavage surface produced w a s  extremely 

i r r egu la r .  

apa r t  i n  ro ta t ion .  Upon contact it w a s  noted t h a t  the  samples had an apparent 

contact area of only about one-fifth of t h e  t o t a l  cross-sect ional  area.  The 

f i rs t  measurement of adhesion, f i v e  minutes a f t e r  cleavage, gave an adhesion 

force of 4 x 10 

force w a s  observed, as a l a t e r a l  ( =  0.5 mm) displacement as t h e  samples were 

brought i n t o  contact.  Repeated contacts caused chips t o  t r a n s f e r  between t h e  

surfaces  without,  however, any noticeable e f fec t  on t h e  adhesion. The adhesion 

force decreased slowly u n t i l  i t s  magnitude dropped below measurable about two 

hours a f t e r  cleavage. The data obtained a r e  shown i n  Figure 17. 

The upper sample ro ta ted  s o  t h a t  the respect ive a-axes were YOo 

2 
w dynes. Only a s m a l l  indication of a long range a t t r a c t i v e  

Study of the  contact surfaces  a f t e r  removal from t h e  vacuum system revealed 

t h a t  a considerable amount of material t ransfer  had occurred. 

Run #8 Orthoclase (001) and Albi te  (001) 

The double cleavage w a s  performed at a system pressure of 4 x 10 

During cleavage, a gas burs t  t o  t h e  top  o f  t h e  mm IIg range w a s  observed. 

The upper sample then ro ta ted  so  t h a t  the respective a-axes were 20' apar t  i n  

ro ta t ion .  F i r s t  contact was made two minutes a f t e r  cleavage r e su l t i ng  i n  an 

adhesion force of 6 x 10 

observed, which had a tendency t o  cause a small la teral  displacement as t h e  samples 

were brought toward contact.  The adhesion force remained about constant f o r  

severa l  hours a f t e r  cleavage. However, about f i v e  hours a f t e r  cleavage it w a s  

noted t h a t  t h e  sample alignment had changed fo r  some reason. 

samples had been displaced about 1 mm l a t e r a l l y  and ro t a t ed  goo. 

t h e  samples were i n  l i n e  and ro ta ted  only 10'. 

- 10 rmn Hg. 

2 dynes. A small long range a t t r a c t i v e  force was 

Previously t h e  

Now, when apar t  

As t he  samples were brought toward 

59 



contact it was found tha t  the long range a t t rac t ive  force would restore  the 

samples t o  t h e i r  previous contact position. 

the  duration of the  run. 

t ions,  it was found tha t  there were several  positions of contact t ha t  were 

s table  and resulted i n  the  same adhesion force; conversely, there  were several  

positions at  which the samples would refuse t o  contact, displacing i n  all cases 

t o  one of the s table  positions. 

"his behavior remained throughout 

In  addition, by changing the re la t ive  sample orienta- 

The data obtained are shown i n  Figure 17. 

The pump was then turned off  and dry N2 slowly admitted t o  the system. 

the  time of turning off the  pump the adhesion force w a s  l o 2  dynes. 

remained about constant t o  a system pressure of 4 x 10 

magnitude decreased below measurement capabi l i t ies .  Evidence of very small 

adhesion persisted t o  about lo-' mm Hg when it w a s  no longer detectable. 

evacuation of the system t o  5 x 

A t  

This force 
-6 mm Hg, beyond which i ts  

Re- 

m Hg did  not cause the adhesion t o  return.  

Run #9 Orthoclase (001) and Orthoclase (001) 

This run represents the  only double cleavage where the same mineral w a s  used 

f o r  both samples. For t h i s  run, a Varian Quadrapole Mass Spectrometer w a s  

added to  the system t o  study the  nature of the  gas bursts which were found 

t o  occur f o r  most runs. 

The double cleavage was performed at a system pressure of 

During cleavage, a gas burst  t o  the m i d  lo-' mi Hg w a s  observed. 

cleavage the upper sample rotated so t ha t  the  respective a-axes were 40' apart  

i n  rotation. 

adhesion force of 8 x 10 

force was present. "his force produced about a 1 mm lateral  displacement of 

t he  upper sample as the  samples were brought toward contact. The force decreased 

rapidly a t  first and then more slowly over the  next 24 hours. 

force was marginally measurable and the run w a s  terminated. 

i n  Figure 18. 

4 x 10-l' mm Hg. 

Following 

F i r s t  contact w a s  made three minutes a f t e r  cleavage giving an 

A re la t ive ly  strong long range a t t rac t ive  3 dynes. 

A t  t h i s  t i m e  the 

The data  are shown 
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10.0 DISCUSSION OF DATA 

10.1 Air-Formed Surfaces 

10.1.1 S i l i ca t e -S i l i ca t e  Contact 

The data f o r  adhesion force as a function of load force f o r  various contacting 

air-formed s i l i c a t e s  are shown i n  Figures 3-6. 

behavior a re  evident.  The first type,  designated type A,  i s  character ized 

pr inc ipa l ly  by a very rapid r i s e  i n  adhesion force as load force i s  increased 

and a lack of de tec tab le  adhesion at  lower loadings.  The adhesion forces 

a r e  highest f o r  t h i s  type ( t h e  s c a t t e r  of da t a  a t  high load appears t o  be due 

t o  t h e  d i f f i c u l t i e s  i n  keeping the  samples p a r a l l e l ) .  

designated type B ,  i s  character ized pr inc ipa l ly  by t h e  r e l a t i v e  i n s e n s i t i v i t y  

of t h e  adhesion t o  the  load force ,  measurable adhesion at  very low load,  and 

t h e  r e l a t ive ly  s m a l l  magnitude of t h e  adhesion force.  

- 
Two types of adhesional 

The second type 

There are three  other  important differences i n  these  two types of behavior 

which are not evident from t h e  f igures:  t h e  detect ion of adhesion i n  

nitrogen (at  atmospheric pressure) ,  t he  presence of surface damage and 

material  t r a n s f e r ,  and the  e f f e c t  of surface roughness. ‘Qpe A behavior 

w a s  observed t o  p e r s i s t  only i n  u l t rah igh  vacuum. It w a s  never observed 

before  o r  during evacuation. After ul t rahigh vacuum had been reached, 

admission of dry ni t rogen (to atmospheric pressure)  caused a rather rap id  

disappearance of t h i s  behavior. Direct admission of air  caused immediate 

disappearance. Type B behavior, on t h e  other  hand, pe r s i s t ed  i n  ni t rogen 

( a f t e r  previous evacuation t o  u l t rah igh  vacuum but not be fo re ) ,  disappearing 

upon admission of laboratory air  t o  t h e  system. I n  every case where type A 

behavior w a s  observed, surface damage w a s  produced; a l so ,  material transfer 

was noted when t h e  surfaces  were of s u f f i c i e n t l y  d i f f e r e n t  character  f o r  it 
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t o  be detected.  This damaged and t ransfer red  material was found t o  adhere r a t h e r  

s t rongly t o  t h e  underlaying surface and w a s  quite d i f f i c u l t  t o  remove. 

19 and 20 are micrographs of two of t h e  surfaces. Figure 19 shows an orthoclase 

(001) surface after contact with a hypersthene (110) surface at u l t rah igh  vacuum 

( R u n  #3, Table 1). 

surface;  t he  l i g h t e s t  material cons is t s  of orthoclase chips t h a t  have been broken 

from t h e  surface;  t h e  darkest  material i s  hypersthene which has been t r ans fe r r ed  

t o  the  surface.  

contact at  u l t rah igh  vacuum with another orthoclase (001) o p t i c a l  f l a t  ( R u n  #12, 

Table 1). 

these  f ind ings ,  no surface damage was produced when only Type B behavior occurred. 

Figures 

The intermediate albedo mater ia l  i s  t h e  o r i g i n a l  or thoclase 

Figure 20 shows an orthoclase (001) o p t i c a l l y  f lat  surface after 

Extensive surface damage i s  evident (b r igh te r  areas). Contrary t o  

A series of curves f o r  or thoclase contacting or thoclase,  at  var ious c r y s t a l l i n e  

o r i en ta t ions ,  a r e  shown i n  Figures 3,  5 ,  6. 

highest  load,  shows t h a t  t he  magnitude of “ype A adhesion i s  influenced by t h e  

c r y s t a l l i n e  or ien ta t ion .  Maximum adhesion occurs when t h e  c r y s t a l s  are c loses t  

t o  being matched i n  or ien ta t ion .  

mismatch beyond which (up t o  about 190°) there i s  some evidence f o r  an increase 

i n  t h e  adhesion force.  

Intercomparison of  t hese  curves, a t  

Minimum adhesion occurs i n  t h e  v i c i n i t y  of 90° 

Figure 5 shows t h e  e f f ec t s  of surface roughness upon t h e  adhesion. Here, surface 

roughness w a s  var ied from 5 microns peak t o  peak t o  300 A peak t o  peak. 

evident t h a t  Type B behavior i s  g rea t ly  influenced by surface roughness, t h e  

adhesion fo rce  magnitude increasing as roughness decreases. 

t he re  i s  no apparent cor re la t ion  between surface roughness and Type A behavior 

(note  t h a t  though t h e  c r y s t a l l i n e  or ientat ions i n  t h e  three  runs a r e  somewhat 

d i f fe ren t  they  f a l l  i n  the  or ien ta t ion  range where adhesion force appears t o  be 

least s e n s i t i v e  t o  or ien ta t ion  change. 

0 
It is  

On t h e  o ther  hand, 

It appears t h a t  t h e  forces involved i n  type A behavior are probably t h e  normal 
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Note: 
One of Two Optically Flat, Air-Formed Surfaces After Contact at 
Ultrahigh Vacuum 
Light Regions are Areas of Surface Disruption and Material 
Deposition 

Figure 20. Micrograph of Orthoclase Surface, Run No. 12, Table 1 
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atomic bonding forces  of t h e  s i l i c a t e  l a t t i c e .  

conclusion a r e ,  f i r s t ,  the  noted surface disrupt ion and material t r a n s f e r  produced 

and, second, t h e  f a c t  t h a t  t h i s  behavior occurred only i n  u l t rah igh  vacuum. 

addi t ional  reason i s  t h e  apparent c rys t a l l i ne  or ien ta t ion  s e n s i t i v i t y  of t h i s  behavior. 

The normal s i l i c a t e  atomic bonding forces  are t h e  only forces ,  except possibly f o r  

mechanical e f f e c t s  produced by abrasion, loading-unloading, and surface roughness, 

t h a t  a r e  s u f f i c i e n t l y  s t rong t o  cause surface d is rupt ion  and mater ia l  t r a n s f e r .  

To exclude these a l t e r n a t i v e  p o s s i b i l i t i e s ,  t h e  surfaces  were contacted i n  a i r  a 

number of t imes,  then loaded, and i n  some cases ro t a t ed  while loaded. No surface 

damage remotely approaching t h a t  obtained i n  vacuum w a s  detected,  and w e  thus  had 

s t rong evidence t h a t  ne i ther  abrasion nor loading-unloading cycles caused the  surface 

damage. 

w a s  made with two op t i ca l ly  f l a t  surfaces.  

of about 300 A. 

surfaces ,  extensive damage w a s  produced. 

grea te r  than i n  any previous run, though t h i s  may be an observat ional  e f f e c t  

because damage should be more e a s i l y  seen against  t h e  smooth, almost flawless 

background su r f  ace. 

The p r inc ipa l  reasons f o r  t h i s  

An 

L 

4 

To el iminate  t h e  p o s s i b i l i t y  of surface roughness being a f ac to r ,  Run #12 

These surfaces  had peak-to-peak roughness 
0 

It was found as noted previously (Figure 20) , t h a t  even with such 

I n  f a c t ,  t he  damage w a s  considerably 

The range of effect iveness  of t h e  normal s i l i c a t e  bonding forces  is  t h e  sho r t e s t  

of all the forces  which may ac t .  

of surface contamination present.  

air undoubtedly remained, even i n  u l t rah igh  vacuum, and it would appear from the  very 

PaIfidrise i n  adhesion with increasing load and i t s  disappearance a t  low loads t h a t  

only under load w a s  t h e  contamination penetrated (note  t h a t  t h e  very rap id  r ise 

i n  adhesion with load force increase i s  not explainable from simple e l a s t i c -p l a s t i c  

deformation theory).  I n  addi t ion,  t h e  charge and coordination demands of t he  sur- 

faces  were undoubtedly i n i t i a l l y  s a t i s f i e d ,  s ince  they were formed i n  air ,  so t h a t  

only under high load could s u f f i c i e n t  d i s t o r t i o n  occur t o  make bonding sites 

Hence they are t h e  most s e n s i t i v e  t o  t h e  amount 

Contamination on t h e  sample surfaces  formed i n  
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available. These considerat ions,  coupled w i t h  t h e  disappearance of type A 

behavior i n  ni t rogen,  air ,  and moderate vacuum, provide s t rong evidence t h a t  

type A behavior i s  indeed caused by t h e  normal s i l i c a t e  bonding forces .  

The evidence ind ica t e s  t h a t  type B behavior i s  due t o  dispers ion forces.  

p r inc ipa l  arguments f o r  t h i s  a r e  (1) t h e  i n a b i l i t y  t o  de tec t  any long-range 

forces  i n  vacuum, except on rare occasions,  ( 2 )  t h e  very small s c a t t e r  i n  t h e  

experimental data ,  ( 3 )  t h e  r e l a t i v e l y  small load dependence of t h e  adhesion, 

(4) t h e  ease with which t h e  magnitude of t h e  adhesion can be explained theoret-  

i c a l l y  on the  basis of dispers ion forces ,  and ( 5 )  t h e  notable  increase i n  t h i s  

type of adhesion as surface roughness decreases. 

The 

Homogeneous sur face  charging could conceivably contr ibute  t o  t h e  r e l a t i v e l y  low- 

magnitude adhesion forces  detected f o r  type B behavior, but it does not appear 

t o  be l i k e l y  because no long-range forces  could be detected.  This lack  of 

detect ion placed an upper bound on t h e i r  effect iveness ,  which is  much less than 

t h e  observed adhesion. The very s m a l l  s ca t t e r  i n  t h e  vacuum da ta  ind ica tes  t h a t  

ne i the r  mosaic nor homogeneous surface charging could be s ign i f i can t ,  s ince  both 

of these  should produce highly e r r a t i c  adhesion behavior f o r  surfaces  formed i n  

air. The r e l a t i v e l y  small load dependence of t h e  adhesion would be expected i f  

t h e  dispers ion forces  were acting. 

forces ,  t h e i r  magnitude should not be grea t ly  a f fec ted  by microdisplacements of  

t h e  surfaces  toward each other  under load. 

Because of t he  long-range ac t ion  of dispersion 

As sur face  roughness decreases,  t he  magnitude of t he  dispers ion force contr ibut ion 

t o  adhesion should increase,  s ince  t h e  surfaces come e f f ec t ive ly  i n t o  more int imate  

contact .  

That t h i s  i s  t h e  case fo r  Type B behavior i s  shown i n  Figure 5 .  
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Q p e  B behavior has been found t o  p e r s i s t  i n  a dry nit rogen environment even 

at atmospheric pressure.  This is consis tent  w i t h  t h e  observations of previous 

invest igators  who performed t h e i r  inves t iga t ions  at moderate vacuum and i n  a i r  

(with careful  p r i o r  surface cleaning).  

r a t h e r  long-range ac t ion ,  are r e l a t i v e l y  in sens i t i ve  t o  the  degree of sur face  

contamination. 

The dispers ion forces ,  being of 

The data f o r  adhesion force as a function of temperature a re  shown i n  Figure 7. 

It can be noted immediately t h a t  within the  s c a t t e r  of t h e  data t h e  adhesion 

force i s  independent of temperature over a r a t h e r  wide temperature range. The 

two runs shown are of p a r t i c u l a r  i n t e r e s t  because R u n  #2 i s  f o r  t he  or thoclase 

(001)/orthoclase (001) samples i n  the  load range where type A behavior occurs 

and R u n  # 5  is f o r  the  hornblende (lOl)/bytownite (001) samples i n  t h e  load 

range where type B behavior occurs. 

dependence f o r  type B behavior is not surpr i s ing ,  and indeed it would not be 

expected i f  type B behavior is, as bel ieved,  produced through the  ac t ion  of 

dispersion forces .  The lack of a temperature e f f e c t  f o r  type A behavior 

indicates  t h a t  e i t h e r  t h e  physical  p roper t ies  of s i l i c a t e s  do not change 

appreciably over t h i s  temperature range o r  t h a t  at t h e  points  of t r u e  contact  

high t rans ien t  temperatures a re  generated, t he  magnitude of which is  not much 

affected by the  background temperature. Contact temperature r i s e  undoubtedly 

occurs, but  t h e  degree t o  which t h i s  can account fo r  t he  observations is 

uncertain. L i t t l e  can be s a i d  about t h e  former p o s s i b i l i t y  because of t h e  

lack of experimental data on s i l i c a t e s  a t  low temperature. 

The f inding of t h e  lack of a temperature 
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10.1.2 S i l i c a t e  - Non-Silicate Contact 

The d a t a  f o r  adhesion force as a function of load force f o r  var ious contact ing 

air-formed s i l i c a t e s  and non-si l icates  are shown i n  Figur-8-10. 

t h a t  t he  s i l i ca te -meta l  data are similar t o  t h e  s i l i c a t e - s i l i c a t e  data i n  

t h a t  types A and B behavior are present.  

(Figure 10)  da ta ,  however, show a behavior intermediate between S p e s  A and B. 

The phenomena observed and the  conclusions reached concerning t h e  nature of t h e  

responsible  forces  f o r  s i l i c a t e - s i l i c a t e  adhesion apply general ly  for t h e  

s i l i ca te -meta l  adhesion. They apply also for  t h e  g l a s s  and alumina adhesion 

though t h e  d i s t i n c t i o n  between t h e  types of behavior i s  not clear (note  t h a t  

sur face  damage and material t r a n s f e r  occurred f o r  both t h e  g l a s s  and alumina 

runs ind ica t ing  t h e  ac t ion  of the  chemical. bonding forces) .  

It i s  seen 

The s i l i c a t e  contact ing non-metals 

1~ 

Figure 21  shows a magnesium surface after contact with or thoclase (001) a t  

u l t rah igh  vacuum (Run #2, Table 2) .  

evident.  The p i t s  represent areas where magnesium has been plucked from the  

sur face  (and deposited on t h e  or thoc lase) .  The h i l l ocks  appear t o  represent  

d i s t o r t e d  areas where the  forces  involved were not s u f f i c i e n t l y  s t rong t o  

produce a p i t .  Electron microprobe analysis  (courtesy Dr. L. Walters, 

NASA Goddard) revealed t h a t  or thoclase had been deposited i n  t h e  v i c i n i t y  of 

t h e  p i t s  and on t h e  tops of t h e  h i l locks .  The adhesion of t h e  or thoclase 

t o  t h e  magnesium was qu i t e  s t rong,  t h e  orthoclase r e s i s t i n g  removal by 

mechanical a c t  ion. 

A number of p i t s  and h i l l ocks  are 

A n  oxide l aye r  w a s  present  on t h e  surface of t h e  m e t a l s  f o r  a l l  runs. Hence, 

except under higher load, t h e  contact w a s  between s i l i c a t e  and m e t a l  oxide. 

Penetrat ion of the  oxide l aye r  under load could contr ibute  t o  Type A behavior 
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Note: 

After Contact With Orthoclase (001) Air-Formed Surface at Ultrahigh 
Vacuum 
Note Pits Where Magnesium Has Been Removed From Surface, and 
Hillocks Where Orthoclase Has Been Deposited 

Figure 21. Pure Magnesium Surface, Run No. 2, Table 2 
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since then t h e  non-directional metal l ic  bonding forces could ac t .  

be pa r t i cu la r ly  so for t he  s o f t e r  metals such as t h e  pure aluminum and 

magnesium,and evidence f o r  t h i s  i s  seen i n  Figure 21. 

This would 

. Final ly ,  it w a s  found, not unexpectedly t h a t  the magnitude of t h e  adhesion 

increased as t h e  m e t a l  hardness decreased [note t h e  s e r i e s  beryllium (RCSO) 

t o  t i tanium a l loy  (RC29) t o  magnesium (FU319) t o  aluminum ( too  s o f t  t o  measure)]. 

10.2 Vacuum-Cleaved Surfaces 

10.2.1 Single  Cleavage 

The data  for adhesion force as a function of time a f t e r  cleavage, c r y s t a l l i n e  

or ien ta t ion ,  and system pressure,  f o r  s ing le  s i l i c a t e  cleavage, a r e  shown 

i n  Figures 11-16. The data were obtained at room temperature and no load 

force vas applied.  A gas burs t  was noted f o r  most runs during t h e  period 

about cleavage. 

The burs t s  are not from the  samples. 

The causes of t he  gas burs t s  are discussed i n  Section 10.2.4. 

It is seen t h a t  t he  adhesion shows a ra ther  rapid i n i t i a l  decrease a f t e r  

cleavage followed generally by a long period during which l i t t l e  change 

OccurFa. The adhesion magnitude is orders of magnitude l a r g e r  than that 

observed for t h e  air-formed surface runs (at low load) ,  and i n  cases over 

an order of magnitude grea te r  than t h e  air-formed surface adhesion under the  

h i  ghe s t appl ied load. 

A r a the r  s t rong  long range a t t r a c t i v e  force was found t o  be present general ly  

(such never appeared fo r  the  air-formed samples). In  many instances it w a s  

s u f f i c i e n t l y  s t rong  t o  p u l l  t he  samples i n t o  contact f o r  separations less 
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than 1-2 m. 

i n t o  t h e i r  pre-cleavage match even with considerable i n i t i a l  mismatch after 

cleavage. The g rea t e s t  such e f f e c t  noted t o  date  w a s  one run where t h e  

force overcame a 30' mismatch i n  ro t a t ion  (upper sample with respect  t o  t h e  

lower sample) and a 1 mm la teral  displacement. Additionally,  it has been 

found t h a t  f o r  some runs t h i s  force caused a t t r a c t i o n  t o  any m e t a l  i n  t h e  

v i c in i ty ,  whereas i n  o ther  runs the re  w a s  no a t t r ac t ion .  The charge a l s o  

appeared t o  have l i t t l e  o r  no surface mobili ty s ince  contact of t he  samples 

with each other  o r  nearby metal p a r t s  did not cause any decrease i n  t h e  

magnitude of t he  adhesion. 

It was a l so  capable of r o t a t i n g  and displacing t h e  samples 

There are three  possible  adhesion-producing mechanisms f o r  t h e  vacuum-formed 

surfaces.  These are  t h e  act ion of (1) t h e  s i l i c a t e  atomic bonding forces ,  

( 2 )  the dispers ion forces ,  and ( 3 )  e l e c t r o s t a t i c  charging ( t h i s  i s  i n  

contrast  t o  t h e  air-formed surfaces  where, besides these  forces ,  surface 

contamination can play a r o l e ) .  

t h a t  the dispersion forces  make l i t t l e  o r  no contr ibut ion t o  t h e  observed 

adhesion. This i s  concluded because l a rge  magnitude adhesion has appeared 

fo r  runs where t h e  surfaces  produced were, inadvertent ly ,  of extreme roughness. 

Of t h e  three  it can be s t a t e d  with ce r t a in ty  

Of t h e  remaining two p o s s i b i l i t i e s ,  it i s  ce r t a in  t ha t  e l e c t r o s t a t i c  charging 

is produced during surface formation. This follows i n d i r e c t l y ,  but  unavoid- 

ably,  from the observations of a s t rong  long range force which could p u l l  

t h e  samples i n t o  contact f o r  separat ion up t o  1-2 mm. 

of t h e  s i l i c a t e  atomic bonding forces ,  f o r  e s s e n t i a l l y  touch contact between 

the  samples, i s  not so c lear .  

The case f o r  t h e  ac t ion  
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Figure 11 shows one of t he  runs of p a r t i c u l a r  i n t e r e s t .  

cleavage a l a r g e  adhesion force w a s  present ( 8  x 10 dynes). This force 

decreased rap id ly  during t h e  next f e w  minutes, bottoming out a t  a constant 

force which pe r s i s t ed  e s s e n t i a l l y  unchanged f o r  an extended period. 

ex t rapola tes  backwards i n  t i m e  t o  sho r t ly  a f t e r  cleavage it i s  seen t h a t  t h e  

adhesion force apparently was then very much la rger .  

rapid decrease w e  measured, by cathetometer, the dis tance of sample separat ion 

at  which they were pul led toge ther ,  f inding t h a t  t h i s  remained constant.  

This apparent constancy of long range force contrasted t o  t h e  l a rge  decrease 

i n  adhesion ind ica t e s  t h a t  during t h i s  period more than one process w a s  act ing.  

This i n i t i a l  l a rge  adhesion may be due t o  t h e  act ion of t he  s i l i c a t e  atomic 

bonding forces .  

f o r  severa l  runs where t h e  samples contacted surrounding system components 

r e s u l t i n g  i n  t r a n s f e r  and adherence of metal t o  t h e  sample. 

following the  r ap id  decrease,  however, it appears r a t h e r  d e f i n i t e  t h a t  t h e  

sur face  charging i s  pr imari ly ,  i f  not en t i r e ly ,  responsible f o r  t he  adhesion. 

Short ly  af ter  

3 

I f  one 

During the  period of 

Additional indicat ions t h a t  t h i s  may be t h e  case were noted 

For t h e  per iod 

The possible  o r i g i n  of t h i s  surface charging is worth note. 

vacuum cleavage runs we observed only a di rec t  a t t r a c t i o n  (no ro t a t ion  o r  

displacement) which indicated t h a t  t he  charge w a s  probably produced through 

t h e  breakage of t h e  atomic bonds. 

d i f f e ren t  types of atoms ( ions )  and when cleavage ( o r  f r a c t u r e )  occurs it is 

hence poss ib le  t h a t  e i t h e r  a random o r  non-random separat ion of ions occurs. 

For t h e  samples s tudied t h e  separat ion should be random, and hence w e  made 

some order  of magnitude ca lcu la t ions  t o  determine whether t h e  observed force  

could be explained on t h i s  basis .  It was found t h a t  a charge excess of only 

- 7  -10 elementary charges was required.  Since bonds were broken i n  t h e  

During the  i n i t i a l  

That is, s i l i c a t e s  possess a number of  

73 



cleavage, such a ne t  charge is e a s i l y  explanable on a random charge separat ion 

basis. 

t h a t  the f i e l d  was macroscopically anisotropic .  This anisotropy cannot be 

explained on t h e  basis of random charge separat ion due t o  bond breakage. 

Rather, it appears t h a t  t h e  defect  s t ruc tu res  of t h e  c r y s t a l s  may be t he  maJor 

contr ibutors .  Possible charging mechanisms r e l a t ed  t o  defect  mechanisms are 

discussed i n  Section 10.2.3. 

However, l a t e r  observations (sample ro t a t ion  and displacement) i nd ica t e  

11 

Figures 13, 15 and 16 show some of t h e  e f f e c t s  of c r y s t a l l i n e  o r i en ta t ion  on 

the  magnitude of t h e  adhesion force. It is seen t h a t  t he  adhesion force i s  

l a rges t  when t h e  c r y s t a l  axes are  c loses t  t o  being matched i n  ro ta t ion .  

Unfortunately t h i s  o r ien ta t ion  e f f e c t  does not serve t o  discr iminate  between 

the  forces t ha t  could a c t  because, as has been seen, t h e  surface charging 

is macroscopically anisotropic;  also,  s ince  the  two faces were formed by a 

s ing le  cleavage they would mate b e t t e r  i n  their  pre-cleavage or ien ta t ion .  

Figure 14  shows t h e  e f f e c t  of system gas pressure upon t h e  adhesion force.  

I t  is seen t h a t  some s m a l l  amount of adhesion can p e r s i s t  up t o  system 

pressures 88 high as 10 mm Hg; also,  that  the  adhesion does not recover 

when the system is re-evacuated t o  the u l t rah igh  vacuum r a g e .  

t h a t  the surface charging (primarly i f  not e n t i r e l y  responsible f o r  t he  

adhesion shown) i s  sens i t ive ,  but not c r i t i c a l l y  so, upon t h e  presence of 

some surface contamination. This  conclusion appl ies  only t o  ni t rogen 

contamination, t h e  gas used, and mey very wel l  not apply t o  gases such as 

oxygen and water vapor. 

-4 

This ind ica tes  
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10.2.2 Double Cleavage 

The da ta  obtained from t h e  double-cleavage s tudies  a re  shown i n  Figures 1 7  

and 18. 

s i l i c a t e  minerals i n  contact.  

surfaces  t o  be contacted were formed by ultrahigh vacuum cleavages of two 

samples of t h e  same mineral. It is  seen t h a t  the highest  value of adhesion 

force occurred f o r  t h e  same samples i n  contact;  a l s o  t h a t  i t s  magnitude is  

t h e  same as t h e  maximum value obtained from single  cleavage. 

A l l  runs i n  Figure 17 are f o r  vacuum cleaved surfaces  of d i s s imi l a r  

Figure 18 shows t h e  s ing le  run where both 

Comparison of Figures 17 and 18 with Figures 11-16 f o r  s i n g l e  cleavage shows 

t h a t  t h e  magnitudes of  t h e  adhesion and general behavior with time are s i m i l a r .  

I n  addi t ion,  it was found t h a t  f o r  both s ingle  and double cleavage a long 

range a t t r a c t i v e  force w a s  present.  This long range force w a s  similar, i n  

both cases ,  with respect  t o  range of  magnitude, macroscopic anisotropy, 

and e f f e c t  of system pressure.  Of pa r t i cu la r  i n t e r e s t  w a s  t h a t  t he  ne t  

force w a s  always a t t r a c t i v e .  It had been thought t h a t  f o r  t h e  double cleavages 

the re  would be occassions where the  net force was repuls ive.  Work function 

d i f fe rences ,  f o r  t h e  d iss imi la r  samples could conceivably cause a ne t  

e l e c t r o s t a t i c  a t t r a c t i v e  force ( see  Section 10.2.3 f o r  discussion) .  However, 

t h a t  apparently t h i s  is not t he  cause is  shown i n  R u n  #9, Table 4,  where t h e  

long range force between e s s e n t i a l l y  ident ica l  or thoclase samples w a s  found 

t o  be a t t r a c t i v e .  The observations ind ica te  t h a t  t h e  macroscopic anisotropy 

i s  t h e  'cause. That is, it w a s  found t h a t  when t h e  samples were brought 

toge ther  t he re  were preferred pos i t ions  f o r  contact,  w i t h  t h e  samples, i f  

poss ib le ,  displacing t o  these  pos i t ions .  
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It i s  concluded t h a t  f o r  any camminution process occurring t o  s i l i c a t e s  i n  

ul t rahigh vacuum, t h e  products w i l l  tend t o  agglomerate. 

10.2.3 

The data obtained ind ica te  t h a t  t he  behavior of t he  long range force i s  

ra ther  complex and qu i t e  var iab le .  Considering a l l  runs t o  date  w e  f i n d  

t h a t  for  some the  samples are a t t r a c t e d  t o  any metal i n  t h e  v i c i n i t y ;  f o r  

others  no a t t r a c t i o n  i s  evident.  For some runs t h e  force f i e l d  appears t o  

be su f f i c i en t ly  anisotropic  t o  r o t a t e  and displace the  samples i n t o  apparent 

atomic match even when a s ign i f i can t  mismatch i n i t i a l l y  e x i s t s ;  f o r  o ther  

runs no such behavior occurs. For some runs t h i s  force appears t o  be 

prac t ica l ly  non-existent,  y e t  s ign i f i can t  adhesion is present ;  f o r  o ther  

runs it is  qu i t e  strong. For one run it pe r s i s t ed  t o  a system pressure of 

about mm Hg and f o r  another t o  about 10 mm Hg. 

Origin and Nature of Long Range Force 

-4 

Since t h i s  force contr ibutes  s ign i f i can t ly  t o  the  observed adhesion it i s  

worth considering i t s  possible  o r i g i n ( s ) ,  and discussing various experiments 

which can perhaps bring an understanding as t o  why it behaves as it does, 

and the extent  t o  which it ac tua l ly  contr ibutes  t o  the  t o t a l  adhesion. 

The long range nature  of t h i s  force ind ica tes  rather d e f i n i t e l y  t h a t  t h e  

force is produced through sur face  e l e c t r o s t a t i c  charging. 

cleaved ( o r  f rac tured)  it is t o  be expected t h a t  surface charging w i l l  be 

produced, associated with t h e  breakage of t he  atomic bonds. This process 

can i n  some instances be non-random, w i t h  each face p r e f e r e n t i a l l y  receiving 

a ne t  and opposite charge, o r  it can be random with t h e  tendency being f o r  

When a c r y s t a l  i s  
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each surface t o  end up w i t h  zero ne t  charge (though a ne t  charge can be 

produced i n  t h i s  case a l so ,  due t o  s t a t i s t i c a l  f luc tua t ions  about t he  n u l l  

po in t ) .  

t h e  charge separat ion should be e s sen t i a l ly  random, rough ca lcu la t ions ,  

reported i n  previous quarter ly  reports ,  indicate  t h a t  t h e  observed magnitude 

of t he  long range force can be eas i ly  explained on t h e  bases of e i t h e r  random 

or  non-random charge separation. However, t h i s  general  mechanism of surface 

charging cannot account f o r  t h e  evident macroscopic anisotropy of t h e  force 

f i e l d  noted f o r  many of t h e  runs. 

mechanisms which may be contributing. 

Though it appears, f o r  t he  s i l i c a t e s  we have been studying, t h a t  

Hence w e  must search f o r  o ther  charging 

Three cha rac t e r i s t i c s  of real  c rys t a l s  which can produce surface charging 

phenomena a re  c r y s t a l l i n e  d is loca t ions ,  non-uniform composition, and t h e  

c r y s t a l  work function (when dealing with dissimilar materials). 

discussed i n  t h e  following sect ions.  

These a re  

10.2.3.1 Crystal  Imperfections 

A l l  t h e  c r y s t a l s  s tud ied  t o  date  possess a center of symmetry and hence are 

not p iezoe lec t r ic .  

associated w i t h  t h e  c r y s t a l  defect s t ruc ture .  Also, charges could be produced 

through polar iza t ion  caused by the  migration of charged dis locat ions during 

precleavage deformation o r  during the  cleavage process i t s e l f .  

However, a second order p iezoe lec t r ic  e f f e c t  could occur, 

Edge d is loca t ions  are charged i n  ion ic  c rys ta l s  and are surrounded by a 

compensating charge cloud attached t o  a var ie ty  of c r y s t a l l i n e  t rapping leve ls .  

When t h e  edge d is loca t ions  move i n  a stress f i e l d  t h e  charge on the  

d is loca t ion  moves with it leaving behind the  compensating charge cloud. 
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If the  l i f e t ime  of t he  trapping l eve l s  is s u f f i c i e n t l y  long, a polar iza t ion  

P is  produced which w i l l  give an e l e c t r o s t a t i c  surface charge i f  the  

cleavage plane i n t e r s e c t s  t he  polar iza t ion  field.  

proportional t o  where is  t h e  cleavage plane normal. 

- 

The ne t  charge w i l l  be 

A second e f f e c t  (which is a real p iezoe lec t r ic  e f f e c t )  i s  due t o  t h e  

assymetry of t he  edge dis locat ion.  

stress f i e l d  (permanent o r  t r ans i en t  due t o  cleavage) w i l l  produce a polar iza-  

t i o n  i f  there is an excess of pos i t i ve  or negative dis locat ions.  A deformed 

sample which has undergone bending and subsequent polygonization w i l l  s a t i s f y  

t h i s  condition. Again, t h e  in t e r sec t ion  of t he  cleavage plane and the  

polar izat ion f i e l d  w i l l  leave a ne t ,  equal and opposite,  charge on t h e  new 

faces  produced. 

Since it lacks a center  of symmetry, a 

There is a f i n a l  e f f e c t  which is pa r t ly  related t o  the  previous two. Over 

and above the  ne t  charging produced at the  kinks of an edge d is loca t ion  

composed of more than one atomic species ,  t he  larger of t h e  two ions w i l l  

tend t o  move i n t o  t h e  d i l a t i o n  region of t he  stress f i e l d  w i t h  t h e  smaller 

staying i n  the compressional region. 

dipole co l inear  w i t h  t he  edge d is loca t ion  together  w i t h  a compensating 

dipolar  charge cloud. 

produces a ne t  po lar iza t ion  f i e l d  which i n  turn  provides a ne t  sur face  

charge when t h e  cleavage plane does not coincide with the neu t r a l  plane of 

t h e  dipole array.  

The f i n a l  configuration is a l i n e  

An excess of pos i t i ve  o r  negative d is loca t ions  

10.2.3.2 

Any c rys t a l  which has a non-uniform composition (due e i t h e r  t o  stoichiometry 

Non-Uni f o m  Compos it ion 

78 



o r  impurity grad ien ts )  has a b u i l t  i n  e l e c t r i c  f ie ld  associated with t h e  

t r a n s i t i o n  zone. The e l e c t r i c  f i e l d  compensates the  d i f fus ion  force due 

t o  t h e  charge c a r r i e r  concentration gradient .  

through an inhomogeneous c r y s t a l l i n e  region passes through a corresponding 

Therefore a cleavage plane 

o polar iza t ion  f i e l d .  

- 10.2.3.3 Work F’unction 

A surface charging can be produced between diss imilar  materials whose work 

functions a re  d i f f e ren t  s ince  the re  w i l l  be a t r a n s f e r  of e lec t rons  which 

equal izes  the  fermi l eve l s  i n  t h e  mater ia ls  i n  contact.  The force w i l l  

always be e i t h e r  zero o r  a t t r a c t i v e .  

force  i s  coupled with one o r  both of t he  previous e f f e c t s ,  complex electro-  

s t a t i c  a t t rac t ion-or ien ta t ion  e f f e c t s  can be expected. 

However i f  the  work function a t t r a c t i v e  

10.2.4 Source of Gas Bursts 

It w a s  found, during t h e  operations involved with cleavage, t h a t  gas bu r s t s  

almost invariably occurred. These were su f f i c i en t  t o  temporarily raise t h e  

system pressure,  i n  some instances,  t o  the  base of t he  10 mm Hg range. 

One possible  source of these  burs t s  could be t h e  sample i t s e l f ,  but t h e  

l a r g e  magnitude of t he  burs t s  made it d i f f i c u l t  t o  bel ieve t h a t  t h e  s m p l e  

w a s  responsible.  

associated with t h e  cleavage, except t h e  cleavage i t s e l f ,  were performed. It 

w a s  found t h a t  i d e n t i c a l  gas burs t s  were obtained. 

chamber i n  various areas a l s o  produced similar bursts .  

w a s  found t h a t  t h e  ion pump diodes were most sens i t ive  t o  t h e  tapping. 

was  therefore  concluded t h a t  1) t h e  burs t s  were not from the  sample, and 2 )  

t h e  bu r s t s  were e i t h e r  due t o  gas released from the  chamber w a l l s  during 

v ib ra t ion ,  or more probably from the pump diodes. 

-8 

Accordingly, t e s t s  were made where a l l  mechanical operations 

Tapping t h e  vacuum 

I n  pa r t i cu la r ,  it 

It 
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A V a r i a n  Quadrapole Residual Gas Analyzer, loaned t o  us by Varian, w a s  

attached t o  t h e  system adjacent t o  t h e  sample t o  be cleaved. 

were taken of 1) t h e  res idua l  gases i n  t h e  pumped system a t  3 x 10 

Spectra 

-10 
mm Hg, 

2 )  t h e  gases found i n  t h e  gas burs t s  r e su l t i ng  from tapping the  system and 

pump diodes, and 3 )  t he  gases found i n  the  gas burs t  occurring during cleavage. . 
It w a s  found t h a t  t h e  p r inc ipa l  background gases at 3 x 10-l' mm Hg consis ted 

of H2, He, CO, A, N 

above a mass t o  charge r a t i o  of 44 were seen. 

and C02, with s l i g h t  t r a c e s  of F and C1.  No peaks 2 
Tapping t h e  chamber w a l l s  and 

pump diodes r e su l t ed  i n  an appreciable increase i n  t he  amounts of H H e ,  CO, 

and A present. 

released. 

indicat ive t h a t  the  gases re leased cane from t h e  s t a i n l e s s  s t e e l  chamber 

2' 

CH4 a l s o  appeared and some addi t iona l  C02 may have been 

The presence of increased amounts of H2 and CO a r e  highly 

w a l l s  and pump body. The spectrum during cleavage appears t o  be i d e n t i c a l  

t o  t h a t  produced by tapping t h e  system, providing fu r the r  evidence t h a t  t he  

observed gases are not coming from the  sample. 

Nevertheless, t he  bu r s t s  d id  cause contamination of t he  sample surfaces .  The 

H e  and A ,  being i n e r t ,  are of no grea t  concern. 

CO can a f f ec t  t he  adhesion, reducing i ts  magnitude over t h a t  which would be 

present if the  surfaces  were u l t rac lean .  

However, t h e  He,  CH4, and 
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11.0 IMPLICATIONS OF RESULTS TO THE MOON 

It has been noted previously tha t  t h e  surfaces of lunar  mater ia l  could range 

from ul t ra-clean t o  contaminated. The findings of t h i s  study demonstrate t h a t  

t he  adhesional behavior of s i l i c a t e s ,  b e l i e v e d t o  comprise t h e  bulk of the 

lunar  surface material, i s  c r i t i c a l l y  dependent upon the  surface s t a t e .  

it can be expected t h a t  the  adhesion problems encountered on the  Moon can vary 

widely, due t o  lateral o r  temporal changes i n  the  surface s t a t e  produced e i t h e r  

through t h e  act ion of t h e  Moon's na tu ra l  environment o r  through t h e  operations 

of man. 

Hence, 

~ 

11.1 Lunar S o i l  Mechanics 

The Surveyors have shown t h a t  t he  lunar materials do adhere and t h a t ,  at 

least  i n  the  v i c i n i t y  of t he  landing s i tes ,  there are no bearing capacity 

problems. These findings a re  i n  accord with those of t h e  present study. The 

present study, addi t iona l ly ,  provides information as t o  t h e  possible  var ia t ion  

i n  s o i l  p roper t ies  t h a t  could be produced by adhesion. 

The magnitude of  t he  adhesion between t h e  s o i l  grains  required t o  account f o r  

t h e  Surveyor observations i s  very roughly t h a t  obtained f o r  t h e  contaminated 

samples after t h e  appl icat ion of moderate load; a l s o  roughly t h a t  found t o  

p e r s i s t  a f t e r  vacuum cleavage ( t h e  surfaces contaminated t o  some degree). 

The implicat ions are therefore  t h a t  some contamination is  present on the  

lunar  gra in  surfaces.  

Surveyor landing, but contamination vas cer tainly introduced by Surveyor. 

Because of t h e  Surveyor contamination it is apparent t h a t  insofar  as the  

Surveyor s i tes  a re  "typical" the  general  adhesion of t he  surface material i s  

at least as g r e a t  as t h a t  observed by Surveyor and indeed m a y  be s ign i f i can t ly  

grea te r .  

This contamination may have been present  p r i o r  t o  t h e  
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It i s  possible t ha t  t he re  are areas on the  surface where t h e  adhesion i s  much 

less than i n  the  Surveyor landing areas. The adhesion could be less where 

t h e  s o i l  has not been loaded t o  any s ign i f i can t  degree, o r  a very l a rge  

amount of adhesion-reducing contamination i s  present.  Such areas would 

probably cons t i t u t e  only a very s m a l l  f r ac t ion  of the surface because 1) the  

I 

.. 
primary s o i l  production agency i s  l i k e l y  t o  be (micro) meteori te  impact so 

t h a t  unless a horizontal  s o i l  t ranspor t  mechanism (o ther  than impact) were 

ac t ive  it i s  d i f f i c u l t  t o  envisage any s ign i f i can t  f r ac t ion  of the  s o i l  t h a t  

has not been loaded, and 2 )  Surveyor has shown t h a t  t h e  general  surface 

contamination, including t h a t  from Surveyor, i s  not s u f f i c i e n t  t o  e l iminate  

adhesion so t h a t  only i n  l imi ted  areas where appreciable gas of i n t e r n a l  

or ig in  may be released could adhesion be reduced over t h a t  found. 

Adhesion contr ibutes  t o  s o i l  s t rength.  The per t inent  r e l a t i o n  i s  

s " p  t an  4 + c 

where s is t h e  s o i l  shear s t rength ,  a measure of how well  t h e  s o i l  w i l l  support 

external  load,  p is  the  load normal t o  the  po ten t i a l  f a i l u r e  plane,  c is the  

cohesion(adhesio& and 8 is  t h e  angle of i n t e r n a l  f r i c t i o n .  

i s  primarily a function of gra in  shape, poros i ty ,  and mechanical f r i c t i o n ;  

increasing as gra in  angular i ty  increases ,  as porosi ty  decreases,  and as 

mechanical f r i c t i o n  increases.  

i s  the  a t t r a c t i v e  in te rac t ion  between s o i l  g ra ins  due t o  t h e  presence i n  the  

s o i l  of water, with i t s  various dissolved e l ec t ro ly t e s .  

are t w o  of the  important parameters i n  s o i l  mechanics. 

increase,  the  problems r e l a t ed  t o  s o i l  behavior under load decrease. 

The quant i ty  8 

The quant i ty  c ,  i n  t h e  terrestrial sense,  

The terms "0" and "Cll 

I n  general ,  as fl and c 



The quan t i t i e s  c and 0 f o r  terrestrial s o i l s  are found t o  be e s s e n t i a l l y  

independent of load,  and i n  t he  above equation they are t r e a t e d  as constants.  

However, t h e  present  study has shown t h a t  t h e  adhesion (cohesion) of lunar  

s o i l s  should be highly load dependent and hence t h a t  c ,  f o r  lunar  s o i l s ,  

w i l l  not be constant.  
7 

The r e s u l t s  a l s o  imply tha t  @ may not be a constant.  

- These findings ind ica te  t h a t  grea t  care  must be taken i n  applying t e r r e s t r i a l  

s o i l  mechanics equations t o  pred ic t  t h e  engineering behavior of lunar  s o i l s .  

It has been found t h a t  a considerable amount of surface charging i s  produced 

when a f resh s i l i c a t e  surface is  formed i n  ul t rahigh vacuum. The ne t  

r e su l t an t  force  w a s  always a t t r a c t i v e .  Hence, during any comminution process 

on t h e  Moon (not  involving the  re lease  of contaminent gases)  t h e  surface 

charging produced should cause agglomeration of t he  newly formed s o i l .  This 

cohesion should be la rge ,  i n  f a c t  possibly la rger  on the Moon than observed 

i n  the  experiments due t o  the  expected g rea t e r  defect densi ty  of lunar  

material. This charging, however, cannot contribute s ign i f i can t ly  t o  t h e  

cohesion over an extended per iod of t i m e .  

decay slowly, over a period of severa l  days t o  weeks due t o  t h e  non-zero 

e l e c t r i c a l  conductivity of s i l i c a t e s ,  and 2 )  the g a l a c t i c  and s o l a r  cosmic 

rays,  t h e  s o l a r  wind, and t h e  s o l a r  photons ( W ,  X-rays) w i l l  a c t  as discharging 

mechanisms. 

The reasons are 1) t h e  charge w i l l  

11.2 

The r e s u l t s  of t h i s  study have shown t h a t  adhesion is  c r i t i c a l l y  dependent 

upon sur face  s t a t e .  Hence, one i s  ill advised t o  make any general  statements 

regarding t h e  magnitude of lunar  adhesion and the degree t o  which it poses a 

problem t o  lunar  operations.  

General Problems t o  Engineering Operations 

Rather, one must f i r s t  specify what operat ion i s  
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t o  be performed. 

posed t o  a man walking across t h e  surface we m u s t  ask: 

materials i n i t i a l l y  clean o r  contaminated; what i s  t h e  mater ia l  of h i s  boot 

i n  contact with t h e  surface;  how much abrasion of t h e  boot and surface material 

can be expected; what are the  amounts, types and source loca t ions  of the  gases 

released from h i s  s u i t ;  and f i n a l l y ,  w i l l  he j u s t  walk over t h e  surface or w i l l  

o ther  operations be performed (such as breaking o f f  rock samples, thereby 

producing f r e s h  surfaces  ) ?  

concerns t h e  emissions of gas from h i s  s u i t  s ince  t h i s  may w e l l  be t h e  primary 

mechanism determining t h e  adhesional behavior encountered (oxygen and water 

vapor are of p a r t i c u l a r  importance s ince  the  surface i s  l i k e l y  t o  be oxygen 

de f i c i en t ) .  

ask ourselves t h e  technique t o  be used, t he  d r i l l  materials, and the tempera- 

t u r e s  t ha t  may be generated. 

operations which must involve production of fresh surfaces  and hence f o r  

which adhesion should pose the  g rea t e s t  problem. 

For instance,  i f  w e  wish t o  determine t h e  adhesion problems 

a r e  the  sur face  

Probably t h e  most important of these questions 

I f ,  on t h e  o ther  hand w e  wish t o  d r i l l  i n t o  the  surface w e  must 

Dr i l l i ng  fa l ls  i n t o  the  general  c l a s s  of 

Since adhesion phenomena depend so grea t ly  on the  p a r t i c u l a r  conditions and 

t h e  operations t o  be performed, discussion of what might occur i n  given 

instances can become ra the r  involved. Nevertheless, some general  statements 

can be made: 

(1) The adhesion of lunar  material w i l l  not i n  general  be a major problem 

on the  Moon provided the  following two conditions are m e t :  

material surfaces i n  contact a r e  contaminated, ana b) t h e  operations 

performed do not remove t h e  contamination nor loa& t h e  lunar  material 

t o  any l a rge  degree. 

a )  a l l  

I f  these conditions are m e t  t h e  adhesion w i l l  be caused pr imari ly  

i f  not e n t i r e l y  by t h e  dispers ion forces  and t h e  magnitude of 
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the  adhesion, considering the  g ra in  i r r egu la r i ty  

and t h e  surface roughness of t h e  majority of engineering 

sur faces ,  w i l l  be small. The only possible d i f f i c u l t i e s  

would involve op t i ca l ly  f l a t  surfaces  and those used t o  

produce vacuum (or  a i r )  t i g h t  seals. 

are v io la ted  then the  importance of adhesion can be expected 

t o  increase grea t ly .  The case where clean surfaces  are 

produced i s  discussed below. I f  t h e  surfaces  are heavily 

loaded t h e  adherance of t he  s o i l  t o  engineering mater ia ls  

w i l l  increase g rea t ly  and material t r ans fe r  and surface 

d is rupt ion  w i l l  occur. This surface disrupt ion and mater ia l  

t r a n s f e r  is of pa r t i cu la r  importance t o  critical. components 

such as o p t i c a l  and thermal cont ro l  surfaces which ind ica tes  t h a t  

during removal of s o i l  material deposited on these  surfaces  

g rea t  care  should be taken not t o  apply load force ( i .e .  

mechanical removal techniques should be avoided i f  poss ib le ) .  

If these  conditions 

(2 )  Lunar material adhesion can become a major problem i f :  

surfaces  are u l t rac lean ,  b )  t he  engineering material surfaces  a r e  

cleaned by mechanical abrasion or  sput ter ing,  or c )  t he  operations 

performed produce f r e sh  surfaces.  

a)  t h e  s o i l  

The magnitude of t h e  adhesion i n  t h i s  case w i l l  be much l a rge r  

than fo r  t he  contaminated surface case and t h e  general  problems 

correspondingly more severe. In  addi t ion,  a considerable 

amount of surface e l e c t r o s t a t i c  charging can be expected. 

This long range e l e c t r o s t a t i c  force ,  i n  p a r t i c u l a r ,  w i l l  make 

it d i f f i c u l t  t o  remove adhering mater ia l  by mechanical means. 
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12.0 CONCLUSIONS 

This report  has summarized t h e  results obtained during t h e  pas t  t h ree  years  

on a study of t he  ul t rahigh vacuum adhesion of s i l i c a t e s  as r e l a t e d  t o  the  

lunar  surface.  h r o  types of s i l i c a t e  surface preparation were used. The 

f irst  type consis ted of forming the  surface i n  air;  t h e  second type consis ted w 

of  forming t h e  surface a t  u l t rah igh  vacuum by cleavage. These two types of 

surface preparat ion were chosen t o  represent  possible  bounds t o  t h e  types of 

s i l i c a t e  surface which may be found on the  moon, t he  first type represent ing 

t h e  contaminated surface case and t h e  second type represent ing the  clean 

surface. Adhesion force was measured as a function of load force ,  temperature, 

surface roughness, type of material, c r y s t a l l i n e  o r i en ta t ion ,  and degree of 

surface cleanl iness .  

The following general  conclusions apply: 

a. Two types of adhesion a re  present f o r  t h e  air-formed surfaces .  

The f irst  type appears at  low load,  is of r e l a t i v e l y  low magnitude, 

and i s  most probably produced by t h e  act ion of t h e  dispers ion forces .  

The second type appears under higher load,  i s  of much g rea t e r  magnitude, 

and i s  most probably produced by t h e  ac t ion  of t h e  normal s i l i c a t e  

atomic bonding forces .  

b .  The adhesion between u l t rah igh  vacuum-formed surfaces  i s  very much 

la rger  than t h a t  between air-formed surfaces .  

adhesion appears t o  be due t o  t h e  act ion of the  normal s i l i c a t e  atomic 

bonding forces .  

The highest  magnitude 
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C .  

d. 

e. 

f .  

A r e l a t i v e l y  s t rong long range a t t r a c t i v e  force is almost always present 

when the  surfaces  are formed i n  u l t rah igh  vacuum. This force i s  ind ica t ive  

of considerable surface charging. Its apparent macroscopic anisotropy 

implies t h a t  i t s  source may w e l l  be associated with defects  (d is loca t ions  

and impur i t ies )  i n  t h e  c r y s t a l l i n e  structure. 

The adhesional behavior of s i l i c a t e s  has been found t o  be c r i t i c a l l y  

dependent upon t h e i r  surface state. 

t h e  adhesional behavior found by lunar missions w i l l  be highly 

dependent upon how these  missions (and operations) affect t h e  surface.  

Hence, it can be expected t h a t  

If t h e  lunar  material surfaces  are clean o r  have been loaded, adhesion 

can contr ibute  s ign i f i can t ly  t o  s o i l  s t rength and i n  general  t he re  

should be no bearing capacity problems. Alternat ively,  i f  t he  surfaces  

are contaminated and have not been loaded appreciably, adhesion w i l l  

contr ibute  l i t t l e  t o  s o i l  s t rength.  

The p r inc ip l e  problems posed t o  lunar  missions by s i l i c a t e  adhesion 

should be those associated with contamination of c r i t i c a l  components 

such as vacuum-tight doors, working mechanical p a r t s ,  and o p t i c a l  and 

thermal con t ro l  surfaces .  

This study represents  t h e  first attempt t o  obtain a quant i ta t ive  understanding 

of t h e  mechanics of s i l i c a t e  adhesion. Though much has been learned,  much 

remains t o  be done before we can conclude t h a t  a f u l l  Understanding has been 

obtained. 
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